
Automated Program Checking via Action Planning

Stefan Edelkamp
University of Bremen

Germany

Mark Kellershoff
Dortmund University of Technology

Germany

Damian Sulewski
University of Bremen

Germany

Abstract

In this paper we translate concurrent C/C++ code into PDDL.
The system then runs heuristic search planners against the
PDDL outcome to generate traces for locating programming
bugs. These counter-examples result in an interactive de-
bugging aid and exploit efficient planner in-built heuristics.
Different aspects like parsing, generation of the dependency
graph, slicing, abstraction, and property conversion are de-
scribed. For data abstraction we provide a library, and for
increased usability the tool has been integrated in Eclipse.

Introduction
Planning via model checking (Cimatti et al. 1997) con-
siders the integration of verification technology into AI
planners. For model checking via planning by consider-
ing the rising effectiveness of planning search heuristics
in verification (Wehrle and Helmert 2009), a natural ques-
tion is to apply planning technology directly. The effec-
tiveness of translating model checking inputs into PDDL
has been documented by a series of preceding papers,
including the communication protocols (Edelkamp 2003),
Petri nets (Edelkamp and Jabbar 2006), and µ-calculus
formulae (Bakera et al. 2008), and graph transition sys-
tems (Edelkamp, Jabbar, and Lluch-Lafuente 2005).

In contrast to model checking (Clarke, Grumberg, and
Peled 1999) that relies on a model of the system to be
checked, program checking (Visser et al. 2003) aims at the
automated verification of programs given its source code by
analyzing the compiled executable. Typically, tools operate
on top of a virtual machine that has been extended to simu-
late different execution branches. Verification units that con-
sider checking the object code like JPF (Visser et al. 2000)
Steam (Leven, Mehler, and Edelkamp 2004) and Moon-
Walker (de Brugh, Nguyen, and Ruys 2009), complement
bounded software model checking tools like CBMC (Clarke,
Kroening, and Lerda 2004).

This paper proposes the automated transformation of
C/C++ sources into PDDL (Fox and Long 2003) to exploit
refined guidance inherent to heuristic search planners. The
rationale of applying heuristics is that directed model check-
ers (Edelkamp et al. 2008) quickly report short counter-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

examples. The rationale for a PDDL encoding are accurate
planning heuristics (Helmert and Domshlak 2009).

The choice of the C/C++ is urged by its wide-spread
use, rising thread parallelism in programs for the support of
multi-core machines, and the lack of advanced bug-finding
support. Tools like valgrind are able to find memory leaks,
but not to validate concurrent programs. As we concentrate
on the imperative core of C/C++, the results likely general-
ize to other programming languages like Java or Ruby.

The transformation into Level 2 PDDL is able to directly
uncover bugs. For the case a program cannot be analyzed
completely, different abstractions apply. Besides slicing the
program without loss of information, data abstraction con-
verts infinite state variables to finite domain, and to Level 1
PDDL. Dependencies among variables are automatically de-
tected by analyzing the parse of the source.

Annotated Parse and Dependency Graph
In program checking, sources are analyzed that have non-
deterministic effects. Such non-determinism can be due
to the interleaving of concurrent threads, unknown assign-
ments to variables, program and user inputs, explicit choice
points imposed by the programmer, or abstractions of deter-
ministic programs.

As C/C++ is a rather complex language (Stroustrup 1994),
we adapted JavaCC by Sreenivasa Viswanadha (published
in 1997) to parse the input. The parser yields an abstract
syntax tree, which we present as a navigational aid to the
programmer, and which is used for further processing. For
verification, the C/C++ code is annotated with a small set of
commands for its controlled execution:

• VLOCK(<variable>) restricts the access to the vari-
able <variable> in the currently invoked thread.

• VUNLOCK(<variable>) releases the lock to the vari-
able <variable>.

• BEGINATOMIC() dictates that the current thread cannot
be suspended.

• ENDATOMIC() terminates the atomic block selection
within a thread.

• VASSERT(<condition>) tracks <condition> to
be satisfied each time the program reaches it.

• RANGE(<variable>,<low>,<high>) offers non-
deterministic choices to a program.

5205

Figure 1: Dependency graph of a C/C++ program.

For transforming the source code, the input has to be made
avaailable in a dictionary data structure, while supporting
the conversion from infix (as used in C/C++) to prefix no-
tation (as used in PDDL). We implemented a hierarchy of
containers. Its structure represents the scopes of a program
and is exploited for constructing the object-oriented depen-
dency graph. An example is shown in Fig.1 together with
parts of the parse tree to its left.

The state of a C/C++ program includes information like
assignments to global and local variables, as well as stack
and dynamic memory contents. We assume variables of type
boolean, integer and real. The situation before the execution
of a program is called initial state, and the state of a program
at its termination is called (valid) end state. Additionally to
the variable assignments, a state contains information about
the program counter, denoting which transition has been or
will be executed. If the program is multi-threaded, a pro-
gram counter is maintained for every running thread includ-
ing the thread for main. For the conversion, we assume that
a static analysis, applied after parsing the code, can detect
the number of threads running concurrently.

The Translation into PDDL
The core motivation of translating the source of a program
into PDDL is to use planner in-built heuristic to drive the ex-
ploration process towards falsifying a property, e.g. in form
of a deadlock, a failed assertion/global invariance, or an ar-
ray access violation.

The output pleases the first two levels from the PDDL hi-
erarchy (Fox and Long 2003). In PDDL Level 1, states are
collections of true facts. It allows quantification over do-
main objects, disjunctive and negated preconditions, as well
as conditional effects. In PDDL Level 2, real-valued flu-
ents are available. Preconditions of actions cover arithmetic
expressions over the variables, while the effects can addi-
tionally modify value assignments.

Conversion of Variables For a C/C++ variable declara-
tion, like int a, we reserve a PDDL variable int a (allowing
real value assignments). Since a program can contain several
variables with name a, every PDDL variable is suffixed with
an additional id, such that for our case we infer int a 1, as it
is the first (and only) appearance of a that is converted. As
a can appear in different threads, we provide an additional
parameter to the PDDL predicate, yielding the expression
(int a 1 ?t - thread) to represent the variable declaration of
a. For variable int b the conversion is analogous. In short
terms, variable conversion is a mapping that assigns a plan-
ning variable to each program variable.

Variable Assignments For translating an assignment to a
variable into PDDL, we construct actions, which convert the
state in the planning model in the same way it does within
the program. As we have the parse of the expression avail-
able, the conversion from in- to prefix notation is immedi-
ate. The parameter is the thread, while the effect changes
the planning state equivalent to the assignment a=1000;:
(:action SimpleAssignment
:parameters (?t - thread)
:precondition (<predecessor has finished>)
:effect (and (assign (int_a_1 ?t) 1000)

(<this action has finished>)
(not (<predecessor has finished>))))

Control Flow We use predicates to model line numbers.
Every action includes as a precondition that the predecessor
(line) has finished its execution. For example, in a sequential
execution line 20 has to finish before line 21 is processed. To
avoid ambiguities, every line number is attached to the file in
which the line is contained. It is also parameterized with the
thread that is invoked. Since in PDDL every possible action
is checked for execution, preconditions have been enlarged
to select the actions that are currently activated.

The action for the first line in the main program includes
(start T0) as a precondition triggered by the initial state,
since it does not have a direct predecessor. The first instruc-
tion of a method also contains a label that it has been called.

Consider the following simple example program fragment
#include "Thread.h"
[...]
class Example:public Thread {
public:
Example();
void run();

};
Example::Example(){}

void Example::run(){
int a;
int b;
a=1000;
b=20;
VASSERT(a < b);

}

After calling run, we have two concurrent threads: main
(thread t0), and the thread (t1) that has been called. If we
omit the details for thread invocation, the remaining pro-
gram logic has to include the variables a and b, their order

6216

and the constraints imposed. Hence, the PDDL equivalent
for the assignments a=1000 and b=20 is as follows.
(:action Example_cpp_Line_20
:parameters (?t - thread)
:precondition (Example_cpp_Line_19 ?t)
:effect (and (assign (int_a_1 ?t) 1000)

(Example_cpp_Line_20 ?t)
(not (Example_cpp_Line_19 ?t))))

(:action Example_cpp_Line_21
:parameters (?t - thread)
:precondition (Example_cpp_Line_20 ?t)
:effect (and (assign (int_b_2 ?t) 20)

(Example_cpp_Line_21 ?t)
(not (Example_cpp_Line_20 ?t))))

An if-statement exists in two different variants (with or
without else block). A model without an else-branch is
not directly convertible in PDDL, as failing the if-condition
would not increase the program counter. We observe that
every action has access to its immediate predecessor, and
every action has at most two successors in case of a branch
and two predecessors in case of a join. A while-statement is
an if-statement featuring a backward jump.

For if-statements we introduce a virtual-else branch. The
if-statement itself would vanish as the conditions are im-
posed as additional preconditions to the actions. But without
modeling the if-statements explicitly, there is a subtle prob-
lem in modeling nested if-statements. Consider the small ex-
tension of the running example in Fig. 2. If one uses one ac-
tion per instruction, then implementing correct precedences
among the if statements is tricky, i.e., to connect an else-
branch to the corresponding if. Therefore, we decided to in-
clude an additional flag and an additional action for starting
and ending an if- or else- part.

void Example::run(){
int a;
int b;
a=1000;
b=20;
if (a > b) {
if (a > 20) {

a=20;
} else {

a=0;
}

} else {
a=1000;

}
VASSERT(a < b);

}

b=20;

VASSERT(a < b);

State

Transition

(a>b)
∧
(a>20)
a=20;

(a>b)
∧
(a<=20)
a=0;

(a<=b)
a=1000;

Figure 2: A nested if-statement and induced control flow.

Fig. 3 relates the source of a simple while-statement to
the according automaton, that is used to monitor the flow of
control in the PDDL code.

Model Checking Statements An assert-statement is split
into two parts. One branch considers the violation of the
assertion, in which case the predicate assertionviolation is
set, the other branch continues with the flow of instructions.

void Example::run(){
int a;
int b;

a=1000;
b=20;
while (a > b) {

a=20;
b=1000;

}
VASSERT(a < b);

}

b=20;

b=1000;

a=20;

VASSERT (a < b);

State

TransitionWHILE
(a>b)

ELSE
(a<=b)

WHILE
(a>b)

ELSE
(a<=b)

Figure 3: A while program and induced control flow.

When searching for the violation of safety properties, this
predicate is included as a goal condition.

The lock-statement denotes that a thread requires exclu-
sive access to a variable. The first thread that locks the vari-
able has top priority, such that all upcoming accesses to the
same variable are rejected. The PDDL model is extended in
the sense that the actions include a precondition for locked
variables, while avoiding multiple locks. A proper locking
mechanism yields checks of invalid end states. A supple-
mentary action wait is generated, that indicates that a thread
waits for a resource. If all threads are blocked, a deadlock
has occurred, an a goal achiever is triggered.

For atomic blocks, in the PDDL model 2 new predicates
are inserted: atomic denoting that the execution is in atomic
mode, and isatomic ?t - thread denoting which thread is ac-
tually atomic. Most ordinary actions are extended by the
following precondition atomic ⇒ (isatomic ?t). The end
of the block generates an action without further specialized
preconditions that deletes atomic and (isatomic ?t).

Complex Statements For indexed variable access first the
index is determined then the access to the array is executed.
As PDDL does not provide a mechanism to index variables
with numbers, we allow the user to adjust upper bounds pro-
vided by the parser (in PDDL 3.1, indirect variable access
is available but only a few planners support the extension).
The conversion of C++-objects into PDDL is possible, if the
initialization uses the new-operator and gets assigned to a
unique name. The new-statement induces the reservation of
a PDDL object with a reference to this object; the variables
of the class contain an additional parameter, whose type is
the class name.

Methods PDDL models cannot generate objects dynam-
ically. The only methods that are currently supported are
those that have integer∗ → integer or integer∗ → void in
their signature.

Methods are converted in actions that are triggered by set-
ting a special predicate. The parameters are found on the
method-stack, and the solutions are found in a special so-
lution register, accessible from the calling action, similar to
what is done in an ordinary executable. Actions are indexed
s.t. more than one call is possible.

7227

Mutex Producer-Consumer BubbleSort10 8-Puzzle
Program l s t t s t l s t l s t

StEAM DFS 66 742 90 122 353 59 594 1184 124 36096 70366 6552
StEAM BF 30 1630 198 29 4383 690 594 1774 88 86 7836 269

FF EHC 27 747 6 20 23 2 - - - - - -
FF Best-First 27 251 4 20 3405 10 - - - - - -
FF DA EHC 28 39 28 20 33 2 661 670 1312 115 932 2585

MFF DA EHC 28 39 108 20 34 56 661 670 8938 361 56257 1177572
MFF DA BF 27 922 877 20 3405 1609 661 73294 79674 99 4113 96291

Figure 4: Results for benchmarks; l denotes the length of the
counter-example, s the number of states, t the CPU time in
milliseconds, DA data abstraction, BF best-first search, and
EHC enforced hill climbing applied in FF/MFF (MetricFF).

Abstraction We mainly support data abstraction (Merino
et al. 2002). In the neg-pos-zero abstraction, for example,
integers are projected to three values of being either posi-
tive negative, or equal to zero. If two negative or two posi-
tive values are multiplied, the result is determined, while for
mixed multiplication, different options are possible. An al-
ternative is an odd-even abstraction with obvious semantics.

Numerical abstractions have be implemented using ab-
straction libraries. The interface serves as a macro that is au-
tomatically extended to enrich the initial state and the PDDL
operators to realize abstraction. The dependency graph then
helps to deduce the set of all variables that are affected.

Programming Environment
The implementation used the following components:
Eclipse 3.3 - Europa + CDT, the planner Metric-FF (Hoff-
mann 2003), and Java SDK 6 (includes Java-Script). The ab-
straction plugin that we have developed (see Fig. 5) consists
of the GUI for parameterizing the algorithms, the parser, the
dependency graph data structure, and the error trailer.

Abstractionplugin

C++-project

Error trail

Figure 5: Abstraction Plugin and Error Trailer in Eclipse.

Figure 4 compares the performance for some simple C++
benchmarks with the one of the C/C++ program checker
StEAM (Mehler 2006), which systematically analyzes a pro-
gram as an executable in object code and complies with in-
and output. In the BubbleSort and 8-Puzzle, the program

checker is faster, while in planning only data abstraction
solves the problem. In the communication protocol exam-
ples, the analysis via PDDL is superior.

We do not claimed to have a full translation of C/C++
to PDDL. For example given that current PDDL is inher-
ently static (it does not allow dynamic object creation), there
are obvious restrictions to the expressiveness of sources that
can be processed (no dynamic memeory allocation, no incre-
mental invocation/deletion of threads etc). Nonetheless, the
results indicate that PDDL can yield exploration advances.

References
Bakera, M.; Edelkamp, S.; Kissmann, P.; and Renner, C. D. 2008.
Solving solving µ-calculus parity games by symbolic planning. In
MoChArt, 15–33.
Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso, P.
1997. Planning via model checking: A decision procedure for
AR. In ECP, 130–142.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model
checking. MIT Press.
Clarke, E. M.; Kroening, D.; and Lerda, F. 2004. A tool for
checking ANSI-C programs. In TACAS, 168–176.
de Brugh, N. H. M. A.; Nguyen, V. Y.; and Ruys, T. C. 2009.
Moonwalker: Verification of .net programs. In TACAS, 170–173.
Edelkamp, S., and Jabbar, S. 2006. Action planning for directed
model checking of Petri nets. Electronic Notes in Theoretical
Computer Science (ENTCS) 149(2):3–18.
Edelkamp, S.; Schuppan, V.; Bosnacki, D.; Wijs, A.; Fehnker, A.;
and Aljazzar, H. 2008. Survey on directed model checking. In
MoChArt, 65–89.
Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A. 2005. Action
planning for graph transition systems. In ICAPS’05-Workshop
on Verification and Validation of Model-Based Planning and
Scheduling Systems.
Edelkamp, S. 2003. Promela planning. In SPIN, 197–212.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of pddl for
expressing temporal planning domains. JAIR 20:61–124.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In ICAPS.
Hoffmann, J. 2003. The Metric-FF planning system: Translating
ignoring delete lists to numeric state variables. JAIR 20:291–341.
Leven, P.; Mehler, T.; and Edelkamp, S. 2004. Directed error
detection in c++ with the assembly-level model checker steam. In
SPIN, 39–56.
Mehler, T. 2006. Challenges and Applications of Assembly-Level
Software Model Checking. Ph.D. Dissertation, University of Dort-
mund.
Merino, P.; del Mar Gallardo, M.; Martinez, J.; and Pimentel, E.
2002. αSPIN: Extending SPIN with abstraction. In SPIN, 254–
258.
Stroustrup, B. 1994. The C++ Programming Language – 2nd ed.
Addison-Wesley Publishing Company.
Visser, W.; Havelund, K.; Brat, G.; and Park, S. 2000. Java
pathfinder - second generation of a java model checker.
Visser, W.; Havelund, K.; Brat, G.; Park, S.; and Lerda, F.
2003. Model checking programs. Automated Software Engineer-
ing Journal 10(2):203–232.
Wehrle, M., and Helmert, M. 2009. The causal graph revisited
for directed model checking. In SAS, 86–101.

8238

