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Abstract

Creating decision support systems to help people coordinate
in the real world is difficult because it requires simultane-
ously addressing planning, scheduling, uncertainty and distri-
bution. Generic Al approaches produce inadequate solutions
because they cannot leverage the structure of domains and the
intuition that end-users have for solving particular problem
instances. We present a general approach where end-users
can encode their intuition as guidance enabling the system to
decompose large distributed problems into simpler problems
that can be solved by traditional centralized Al techniques.
Evaluations in field exercises with real users show that teams
assisted by our multi-agent decision-support system outper-
form teams coordinating using radios.

Introduction

Teams of people need to coordinate in real-time in many
dynamic and uncertain domains. Examples include disaster
rescue, hospital triage, and military operations. It is possible
to develop a plan a priori for these domains, but many parts
must be left unspecified because people won’t know exactly
what needs to be done until they are executing the plan in
the field. Additionally, requirements and tasks can evolve
during execution.

Our work addresses a fundamental multi-agent systems
endeavor of creating decision support systems that help hu-
mans perform better in real-time dynamic and uncertain do-
mains. The technical challenges to compute good solu-
tions for such domains have been well documented (Mur-
phy 2004; Groen et al. 2007; Boutilier 1999). There are two
main contributions in this paper: (1) we present a generic
methodology for human guidance for planning and schedul-
ing activities, and (2) we discuss an extensive investigation
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as to its usefulness in a thorough field exercise conducted by
a third party.

In practice, it is possible to address specific domains with
custom algorithms that use powerful heuristics to leverage
the structures unique to that domain. These solutions are
expensive to create as even these domains involve planning,
uncertainty and distribution. The goal remains to develop
generic approaches that produce good solutions that help hu-
man teams in many domains.

We introduce a new approach, STaC, based on defining
collections of Subteams each with Tasks to perform and
Constraints on how they should be performed. The premise
that people have good intuitions about how to solve prob-
lems in each domain and this approach both matches this
intuition and can be matched to generic models of task allo-
cation problems. The idea is to enable users to encode this
intuition as guidance for the system and to use this guidance
to vastly simplify the problems that the system needs to ad-
dress.

The key to STaC is using the model and guidance to pro-
duce sufficiently smaller task structures that can be central-
ized so that a single agent can determine who does what,
when and where with respect to these significantly simpler
task structures. This mitigates the distribution challenge
and enables using auxiliary solvers based on established Al
techniques which produce good solutions at a smaller scale.
These smaller task structures are solved independently as-
suming that the human guidance has addressed any signif-
icant dependencies. While this may not be the case in all
domains, in many scenarios including ours, humans are far
better at identifying effective structural decompositions than
automated techniques.

STaC addresses tracking the dynamism in these task
structures, the transitioning of agents assignment between
these smaller task structures and the invocation of auxiliary
solvers. Given that the task structures are treated indepen-
dently and sufficiently small to be centralized, we call them
sandbox reasoners. The sandbox reasoners required in each
domain are different, so custom code must be written for
each domain. However, the benefit of the approach is that
sandbox reasoners are significantly simpler than the custom
solvers required to produce a custom solution for a domain.

The paper is organized as follows. The next sections intro-
duces the real-world domain where our approach was tested
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Figure 1: Field Exercise Images from Rome, New York,
USA

followed by related work. We then describe the details of the
STaC approach and the particular sandbox reasoners used in
our example domain. We close with evaluation results, con-
clusions and directions for future work.

Field Exercises

The field exercises were based on a simulated disaster res-
cue domain. The challenge was to show that a human-team
supported by intelligent agents could outperform a human
team operating by themselves. The first two exercises were
held in the city of Rome, New York, USA, and the sec-
ond three were in Stanton Wood Park in Herndon, Virginia,
USA. Images of the field exercise in Rome are shown in
Figure 1 and a map of the sites and road network of Stanton
Wood Park are shown in Figure 2. They were organized and
evaluated by independent parties contracted by the DARPA
(Defense Advanced Research Projects Agency) Coordina-
tors program. The rules of the field exercise were created
collaboratively by the teams building coordinator agents,
the independent evaluation team, and subject matter experts.
The specific instances or scenarios that comprised the test
problems were chosen by the independent evaluation team.

Various locations were selected as sifes and a feasible road
network was constructed. If the site was populated, it could
have injured people in either critical and serious condition.
Populated sites would also have gas, power and water sub-
stations which may have been damaged. In addition, any
site could have facilities such as a hospital, clinic, ware-
house, gas main station, power main station and water main
station. A team would obtain points by rescuing injured to
hospitals or operational clinics (before a deadline associated
with each injured person) and by repairing main stations and
substations. The goal of a scenario was to accumulate as
many points as possible before the scenario deadline.

The teams were composed of 8 field agents and 2 com-
mand agents. Each agent had a different set of skills. Three
specialists in gas, power and water could perform major and
minor repairs in their respective skill area. The medical spe-
cialist could load any type of injured person by themselves.
The remaining four survey specialists could have any col-
lection of skills involving minor repairs. The field agents
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could move throughout the field exercise area and perform
actions. The command agents were located at a base where
they helped to coordinate the activities of the team. The Ra-
dio Team communicated only with radios. Our CSC Team
had ruggedized tablet computers on which our agents were
loaded, in addition to radios. The tablets had cell modems
and GPS.

Many outcomes were revealed during the game for which
little or no likelihood information was given a priori, i.e.,
no probability distribution functions over outcomes. Teams
did know the space of possible outcomes beforehand. A sur-
vey for damage at a main station or substation revealed the
number and type of problems chosen from a set of known
possible problems. A survey for injured at a populated site
revealed the number, types and deadlines for the injured at
that site. As the result of a survey, any team member might
be injured, forcing them to go to an operational medical fa-
cility to recover before proceeding with any other action. A
survey could also reveal that the vehicle of the agent do-
ing the survey had failed and would require a vehicle repair
before the agent could travel to any other site. While travel-
ing, agents could encounterroad blocks which could not be
passed until fixed. Travel and repair times could vary and
repairs could fail. These dynamic and uncertain events were
planned parts of the exercise. In addition, the teams had
to address uncertainties inherent in the environment, such
as noisy radios, weather, and other activities in the public
settings. Furthermore, most of these outcomes were only
observable by the agent encountering the outcome.

The independent evaluation team chose the scenario from
the space of possible exercises and informed the teams of
the details below one day prior to the test: (1) the locations
of populated sites and facilities, (2) the road network and
ranges on travel times between sites, (3) a range for the to-
tal number of injured at each site, (4) the points for rescu-
ing each type of injured, which could vary by type and site,
(5) the points for repairing each substation or main station,
which could vary by type and site, (6) potential problems af-
ter surveys for damage and corresponding repair options, (7)
ranges on repair times, (8) likelihoods of failure for every re-
pair activity, and (9) the skills of the survey specialist agents.
The deadlines (for the scenario and injured) did not allow
teams to do all possible repairs and rescues. The teams had
one day to form a high-level strategy. The only element of
uncertainty which could be modeled accurately with a prob-
ability density function was (8). When a team member com-
pleted a repair activity, they would call the evaluation team,
which would report whether the repair was successful or a
failure. The range in (3) was respected by the scenario de-
signers, i.e., the number of injured did not fall outside the
given range.

There were many rules and couplings that forced agents
to coordinate. To do surveys, gas and power substations
at the site had to be off, which required agents with those
skills. Two agents had to be at the same location simulta-
neously to load a critically injured person or repair a road
block. Repair options could involve multiple tasks and re-
quire two agents with certain skills to act in synchrony or
in a particular sequence. Some repair options required kits



Figure 2: Stanton Woods Park, Herndon, Virginia, USA

which guaranteed their success, but kits were available only
at warehouses. Agents could transport at most one entity,
i.e, either a repair kit or a single casualty. A substation was
considered repaired only if the corresponding main station
was also repaired. A clinic was not operational until all sub-
stations at the site and all corresponding main stations were
repaired. These are examples of rules that, along with the
dynamism and uncertainty in outcomes mentioned earlier,
created challenging real-time real-world distributed coordi-
nation problems.

The goal was to see if humans operating with radios and
a multi-agent decision-support system could outperform hu-
mans operating with only radios. While some aspects of a
real-world disaster scenario were abstracted, we believe the
field exercises closely approximated the challenges of help-
ing a human team solve difficult real-world problems.

Related Work

The STaC framework was developed during the DARPA
Coordinators program. In the first two years, DARPA ran
competitive evaluations on simulated scenarios, and CSC
(Criticality-Sensitive Coordination), the underlying system
behind the STaC framework, won such evaluations by con-
siderable margins against two competing approaches based
on Markov-Decision-Processes (MDPs) (Musliner et al.
2006) and Simple Temporal Networks (STNs) (Smith et al.
2007).

The MDP-based (Musliner et al. 2006) approach ad-
dressed the infeasibility of reasoning over the joint state
space by setting the circumstance set to a subset of local
state space that is reachable from the current local state,
unrolling the state space by doing a greedy estimation of
boundary values. It biased its local reward function on the
commitments made by the agents during execution. How-
ever, such approximations lose critical information, explor-
ing state spaces that are far from good distributed solutions.

The STN framework (Smith et al. 2007) addressed tem-
poral uncertainty by using a time interval (instead of a point)
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as the circumstance that denoted feasible start times for a
method to be executed. The system used constraint prop-
agation to update the start intervals of the agents’ activities
during execution. A policy modification phase was triggered
if execution was forced outside the given set of intervals.
One of the problems of this approach is that agents tried
to maintain consistency and optimize their local schedules,
losing information that was needed to timely trigger policy
modifications for their schedules.

We encoded scenarios of the field exercise as planning
problems using PDDL (Planning Domain Definition Lan-
guage) (Fox and Long 2006). The motivation was to identify
to the extent to which current automated planning technol-
ogy can address complex distributed, resource-driven, and
uncertain domains. Unfortunately, this proved to be ex-
tremely difficult for state-of-the-art planning systems. From
the set of planning systems tried, only LPG-TD (Gerevini
et al. 2005), and SGPLAN (Chen, Wah, and Hsu 2006)
solved a few simplified problems, after uncertainty, dy-
namism, non-determinism, resource-metrics, partial observ-
ability and deadlines were removed. Planners were unable
to scale to more than 5 sites. LPG-TD produced solutions
more efficiently but less optimally.

In general, mixed-initiative approaches where humans
and software collaborate can often produce better solutions
for complex problems. Mixed-initiative planning systems
have been developed where users and software interact to
construct plans. Users manipulate plan activities by remov-
ing or adding them during execution while minimizing the
changes from a reference schedule (Ai-Chang et al. 2004;
Hayes, Larson, and Ravinder 2005; Myers et al. 2003).
Most of these systems are centralized, so humans and sys-
tems are fully aware of the entire plan, and of the conse-
quences of updating it. In our scenario, agents (including
humans) have subjective views of the world, and any deci-
sion may trigger many unknown global effects.

Multi-agent systems for disaster domains have been stud-
ied in the context of adjustable autonomy. The idea is to
improve limited human situational awareness that reduces
human effectiveness in directing agent teams by provid-
ing the flexibility to allow for multiple strategies to be ap-
plied. A software prototype, DEFACTO, was presented and
tested on a simulated environment under some simplifica-
tions (e.g., no bandwidth limitations, reliable communica-
tions, omnipresence) (Schurr et al. 2005).

Conclusions and Future Work

Our 18-month experience working on a system to compete
against radio teams in the field exercises provided evidence
for the benefits of our approach. Our starting point was
our generic CSC system developed during the previous two
years to solve generic, synthetically generated problem in-
stances specified in CTAEMS. Even though the synthetically
generated problem instances were generated according to
templates that combined “typical” coordination situations,
the resulting problems were not understandable by humans.
In contrast, the field exercise problems are more natural, and
appeal to our lifetime of experience coordinating every day
activities. Intuitions about space, distance, time, importance



and risk all came into play, enabling teams of humans to
devise a sophisticated strategy with a few hours of brain-
storming. It became obvious early on that the generic CSC
system would not be able to produce solutions comparable
to the desired sophisticated, coordinated behavior of human-
produced strategies.

Our existing system had performed extremely well in
Phase 2 by using our Predictability and Criticality Metrics
(PCM) approach. In the PCM approach, the policy modifi-
cations that agents consider are limited to those that can be
evaluated accurately through criticality metrics that capture
global information. These policy modifications were simple
and thus the reasoners that implemented them were simple
too.

For the field exercises, we extended our approach so that
policy modifications would be constrained using the guid-
ance provided by the users. This guidance was in the form
of a sequence of sites to visit. The system was left to make
decisions that we believed it could evaluate accurately (e.g.,
how to perform repairs or rescue injured at a single site). The
system relied on the TCR-set criticality metric to determine
how to move agents along the list of guidance elements. The
approach worked well. Our users outperformed the radio
team because they were able to communicate their strategy
to their agents, and the system optimized the execution of
the strategy, adapting it to the dynamics of the environment.

The field exercises in Rome used a simpler language for
specifying guidance. It had a single guidance group con-
sisting of the entire set of agents. Also, it did not support
constraints to control the capabilities within a guidance el-
ement. In that evaluation, our system remained competitive
with the radio team, but lost in two out of the three scenarios.

The final language for guidance was inspired by our ob-
servations of the radio-team strategies, extensive discussions
with subject matter experts and extensive numbers of simu-
lations. We noted that while the human team could not ex-
ecute a strategy as well as we could, the space of strategies
that they were able to engage were far more sophisticated
than ours. This led to the creation of a the more sophisti-
cated formalism for capturing human strategic guidance.

We have taken the first step towards generic coordination
technology that end-users can tailor to specific problem in-
stances. The approach was validated in one domain thanks
to the extensive and expensive evaluations carried out by the
DARPA Coordinators program. In the future, we hope to
be able to apply this approach to other application domains.
One key area that needs to be investigated is extensions to al-
low human users to make guidance adjustments during ex-
ecution. There are situations where a series of outcomes
either invalidates an assumption when creating the a priori
guidance or creates an opportunity to improve on that guid-
ance. Addressing this requires the ability for human users
to quickly and easily understand and modify the guidance
while it is being executed. Even more advanced steps would
be evaluating and ultimately generating appropriate online
guidance modifications.
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