Planning for Data Mining Tool (PDM)
Extended Abstract

Javier Ortiz and Rubén Suarez and Tomas de la Rosa

Susana Fernandez and Fernando Ferniandez and Daniel Borrajo

Departamento de Informdtica
Universidad Carlos III de Madrid,
Avda. de la Universidad 30
28911 Leganés (Madrid), Spain

Introduction

We present a tool, PDM (Planning for Data Mining), based
on Automated Planning that helps users (non necessarily ex-
perts on data mining) to perform DM (Data Mining) tasks.
The starting point is a definition of the DM task to be car-
ried out and the output is a set of plans that are executed in
a DM tool to obtain a set of models and statistics. Plans are
data-mining knowledge flows, i.e. sequences of DM actions
that should be executed over the initial datasets to obtain the
final models. However, the number of feasible plans that
solve the same DM task is huge making necessary to rank
them by some criterion. In a first approach, the ranking is
performed following some expert estimations on the desired
mining-results of the DM actions. Afterwards, these estima-
tions are improved using machine learning techniques. In or-
der to define the DM task, we use emerging standards, such
as PMML (Predictive Model Markup Language). PMML is
the leading standard for statistical and DM models and sup-
ported by over 20 vendors and organizations. With PMML,
it is straightforward to develop a model on one system us-
ing one application and deploy the model on another system
using another application. The PMML file is automatically
translated into a planning problem described in PDDL2.1.
So, any state-of-the art planner can be used to generate a
plan (or plans), i.e. the sequence of DM actions that should
be executed over the initial dataset to obtain the final model.
Each plan or knowledge flow is executed by a machine learn-
ing engine. In our case, we employ one of the most used
DM tools, WEKA (Witten and Frank 2005). In WEKA,
knowledge flows are described as files with a specific for-
mat, KFML, and datasets are described as ARFF (Attribute-
Relation File Format) files. The results of the DM process
can be evaluated, and new plans may be requested to the
planning system.

Background

This section describes two of the three languages used in
this work and the files used in the learning component.
First, we describe PMML (Predictive Model Markup Lan-
guage), an XML based language for DM. Then, we describe
KFML (Knowledge Flow for Machine Learning), another

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

21

David Manzano
Ericsson Research Spain
Madrid, Spain

XML based language to represent DM knowledge flows for
the WEKA tool (Witten and Frank 2005). The third lan-
guage used in PDM, PDDL (Planning Domain Definition
Language), is well known in the planning community. Fi-
nally we describe the type of files used in the learning pro-
cess.

The Predictive Model Markup Language (PMML)

PMML is an XML-based markup language developed by
the Data Mining Group (DMG) to provide a way for appli-
cations to define models related to predictive analytics and
DM and to share those models between PMML-compliant
applications. ! It is composed of five main parts:

e The header contains general information about the file,
like the PMML version, date, etc.

e The data dictionary defines the meta-data, or the descrip-
tion of the input data or learning examples.

e The transformation dictionary defines the applicable func-
tions over the input data, like flattening, aggregation, av-
erage or normalization among many others. This knowl-
edge defines the actions that can be applied over the data
in the first step of the mining process.

e The models contain the definition of the DM models.

e The mining build task describes the configuration of the
training task that will produce the model instance. This
mining build task can be seen as the description of the se-
quence of actions executed to obtain the model. From the
perspective of planning, it can be seen as a plan. This plan
would include the sequence of DM actions that should be
executed over the initial dataset to obtain the final model.

WEKA and the Knowledge Flow Files (KFML)

WEKA (Witten and Frank 2005) is a collection of machine
learning algorithms to perform DM tasks. It includes all
the software components needed in a DM process, from
data loading and filtering to advanced machine learning al-
gorithms for classification, regression, etc. It also includes
many interesting functionalities, like graphical visualization
of the results. WEKA offers two different usages. The first
one is using directly the WEKA API in Java. The second

'See www.dmg.org for further information.

one consists of using the graphical tools offered. The tool
included in WEKA we use is the Knowledge Flow. WEKA
Knowledge Flow is a data-flow inspired interface to WEKA
components. It allows to build a knowledge flow for pro-
cessing and analyzing data. Such knowledge flow can in-
clude most of WEKA functionalities: load data, prepare data
for cross-validation evaluation, apply filters, apply learning
algorithms, show the results graphically or in a text window,
etc. Knowledge flows are stored in KFML files, that can be
given also as input to WEKA.

A KFML file is an XML file including two sections. The
first one defines all the components involved in the knowl-
edge flow, as data file loaders, filters, learning algorithms, or
evaluators. The second one enumerates the links among the
components, i.e. it defines how the data flows in the DM pro-
cess, or how to connect the output of a component with the
input of other components. WEKA Knowledge Flow allows
loading, graphically editing, executing and saving KFML
files. A knowledge flow can be seen as the sequence of steps
that must be performed to execute a DM process.

Attribute-Relation File Format (ARFF)

An ARFF (Attribute-Relation File Format) file is an ASCII
text file that describes a list of instances sharing a set of at-
tributes. ARFF files were developed for use with the WEKA
machine learning software.> ARFF files have two distinct
sections. The first section is the Header information, which
is followed by the Data information. The Header of the
AREFF file contains the name of the relation (name of the
DM task), a list of attributes (potentially including the class),
and their types. The ARFF Data section of the file contains
the actual instances, described in terms of the values of the
attributes.

The Planning for Data Mining (PDM) Tool

Figure 1 shows the PDM architecture of the implemented
system. There are four main modules; each one can be
hosted in a different computer connected through a network:
Client, Control, Datamining and Planner. We have used
the Java RMI (Remote Method Invocation) technology that
enables communication between different servers running
JVM’s (Java Virtual Machine). The planner incorporated in
the architecture is SAYPHI (De la Rosa, Garcia-Olaya, and
Borrajo 2007) and the DM Tool is WEKA (Witten and Frank
2005). However, given that we are using standard languages
other planners and/or DM tools could have been used.

The Client module offers an interface that provides access
to all the application functionalities. It generates a PMML
file from a high level description of the DM task specified
by the user using the interface. Then, it sends the PMML
description to the Control module.

The Control module interconnects all modules and per-
forms the required translations. The translations needed are:
from PMML to PDDL, PMML2PDDL; and from a PDDL
plan to KFML, P1an2KFML. The input to the module is the
DM task together with the dataset. First, the PMML2PDDL

2See www.cs.waikato.ac.nz/ ml/weka/arff.html for further in-
formation.

22

PMML

ARFF
*=problem
¥

file

Result

CLIENT MODULE Lesu
zip file

JAVA RMI

CONTROL MODULE ¥
PMML problem —

PMML
TRANSLATGR
Domain

- PDDL problem
PDDL domain <

XML plan —

PLAN
TRANSLATQ

F)

KFML plan «—

2 "\i

* *

JAVA RMI JAVA RMI
JAVA RmI JAVA RMI
PLANNER MODULE DATAMINING MODULE
PDDL domain ARFF_KFML plan Result
PDDL problem XML plan file © ARFF file zip file
1))
PLANNER TOOL ARFF DM TOOL
SAYPHI DIRECTORY WEKA
Figure 1: Overview of the

PDM architecture.

translator generates the PDDL problem file from the PMML
file. Then, the planner is executed to solve the translated
problem. The returned set of plans is translated to several
KFML files. Finally, the DM Tool is executed to process and
run the translated KFML files. The result is a compressed
file containing a set of directories, one for each plan. Each
directory contains the model generated by the DM Tool, the
statistics related to the evaluation of the model, the plans
generated by the planner, and the corresponding DM work-
flow in KFML. This results are used to create an ARFF file.
Such ARFF file let the system learn the estimations given by
experts.

The Datamining module permits the execution of DM
tasks in the WEKA DM Tool through Knowledge Flow
plans. It can obtain the model output and the statistics gen-
erated as a result of the Knowledge Flow execution. This
module also contains an ARFF directory for managing the
storage of the datasets that are necessary for the WEKA ex-
ecutions. The input to the module is a KFML file and the
output is a compressed file. The output is the model gener-
ated by the plan and the statistics related to the evaluation of
the model.

The Planning module receives each problem and domain
in PDDL format. It returns a set of plans in XML format
ready for the conversion to a KFML format. Currently, plan-
ning tasks are solved by the SAYPHI planner (De la Rosa,
Garcia-Olaya, and Borrajo 2007), but the architecture could
use any other planner that supports fluents, conditional ef-
fects and metrics. We have used SAYPHI because it: i) sup-
ports an extensive subset of PDDL; and ii) incorporates sev-
eral search algorithms able to deal with quality metrics.

Building the models from DM Tasks in PDDL

The main challenge of our approach is how to model DM
tasks by means of Automated Planning (AP). As we said, an
AP task is defined by two files, the domain definition and

the problem description, whereas the DM task is defined by
the PMML file.

The PMML file description

The header of the PMML file contains the following infor-
mation:

e The DM goal. It can be classification, regression or clus-
tering.

e The dataset location and size.

e The hard and soft constraints of the user. An exam-
ple of hard constraint is obtaining an error lower than
a given threshold, whereas minimizing the total execu-
tion time is an example of soft constraint or preference.
We handle preferences and hard constraints over: i) exec-
time, for minimizing/constraining the execution time,
i) percentage-incorrect, for minimizing/constraining the
classification error; iii) mean-absolute-error, for mini-
mizing/constraining the mean absolute error in regression
tasks and clustering, and iv) unreadability, for maximiz-
ing the understandability of the learned model (we trans-
form maximizing the understandability of the learned
model for minimizing/constraining unreadability).

The data dictionary includes one field for each attribute
in the dataset. The transformation dictionary includes one
function for each possible filter the user wants to apply over
the input data. Finally, the model part contains the definition
of the DM models. The user can specify the same model but
with different parameters. In general, for most DM tasks, a
user would include in the PMML file the full set of WEKA
DM techniques and some common settings for their param-
eters.

The PDDL Domain description

The PDDL domain file contains the description of all the
possible DM tasks (transformations, training, test, visualiza-
tion, ...). Each DM task is represented as a domain action.
The PDDL problem files contain information for a specific
dataset (i.e. dataset schema, the suitable transformation for
the dataset, the planning goals, the user-defined metric, etc.).
Domain predicates define the state space containing static
information (i.e. possible transformations, available train-
ing or evaluation tasks, etc.) and dynamic information that
changes during the execution of all DM tasks (e.g. adding
the fact that the dataset has already been pre-processed or
evaluated). The functions allow us to define thresholds for
different kinds of DM features (e.g. error, execution time
threshold, or understandability of a model) and to store the
values updated during the execution (e.g. total estimated er-
ror, execution time, or understandability).

Compilation of a PMML into a PDDL Problem

The PMML2PDDL translator automatically converts parts of
a PMML file with the DM task information into a PDDL
problem file. The translator uses expert knowledge to de-
fine some important planning information like the execution
time of the DM tasks, the classification error for classifica-
tion models or the mean absolute error in regression tasks

23

and clustering and the understandability of the each model.
The problem file together with a domain file, that is fixed for
all the DM tasks, are the inputs to the planner. The problem
file contains the particular data for each DM episode, includ-
ing the dataset description, the transformations and models
available for that problem, and the possible preferences and
constraints of the user.

Planning for DM Tasks

SAYPHI solves the planning task depending on the metric
specified in the PMML file. SAYPHI includes a collection of
search algorithms and domain-independent heuristics. Here,
we use Best-first Search with the relaxed planning graph
heuristic of FF (Hoffmann and Nebel 2001). Given that the
heuristic is not admissible, it does not guarantee to find the
best solution. Also, it is an open problem to assign the exact
cost estimations (in terms of accuracy, time to learn, or un-
derstandability) to planning (DM) actions. So, once it finds
a solution, it continues exploring nodes in order to find mul-
tiple solutions. Probably, the best models according to the
planner are not necessarily the best models according to the
user due to the estimation of the action cost explained below.
Therefore, diversity is the only way to avoid this problem.

The Planner module outputs all the generated plans en-
coded in an XML file. P1an2KFML translates each plan
into a KFML file, so it can be executed by the WEKA
Knowledge Flow. The translator generates as output a new
KFML file with an equivalent plan plus some extra actions.
Each action in the PDDL domain corresponds to one or
many WEKA components. Therefore, the translator writes
for each action in the plan the corresponding set of XML
tags that represent the WEKA component. Finally, the trans-
lator adds some extra components in order to save the infor-
mation generated during the execution. That information is
composed of the learned models and statistical information
as the execution time, accuracy, ...

Learning

As defined above, the PDM architecture uses expert knowl-
edge to define some important planning information, like the
time required to build an specific model, or the estimated
accuracy of the resulting model. Initially, these values are
defined by an expert. However, those estimations can be far
from correct values, since they are hard to define. Also, it
can become difficult to provide those values under all possi-
ble uses of the techniques and the different domains.

The goal of the learning component is to automatically
acquire all those estimations from the experience of previous
DM processes. The data flow of this component is described
in Figure 2.

The main steps of this flow are:

1. Gathering DM Results: the goal is to gather DM expe-

rience from previous DM processes. All the information
is stored in an ARFF file. For a given DM process, the
following information is stored:

e Information about the data set: number of instances of
the data set, number of attributes of the data set, number
of continuous attributes, etc.

ERROR
MODEL

TIME

MODEL ARFF

file
Expected
execution
Agl';F time, error, .., TASK
PDDL Problem PARSER
OUTPUT Dynamic | Static
PARSER part part ARFF PMML problem
Results from X
previous
executions PLANNER TOOL
SAYPHI

Figure 2: Learning flow in the PDM architecture.

e Information about the model to build: the type of model
(association, clustering, general regression, neural net-
work, tree, etc.), the algorithm used to learn the model
(RBFNetwork, J48, etc.), the type of function (classifi-
cation, regression, clustering), the learning parameters,
etc.

e Information about the results obtained: type of evalua-
tion (split, cross validation, training set), time to build
the model, accuracy, mean squared error, etc.

e The plan that represents the DM workflow, and that has
been executed to obtain the model

2. Model generation: the information obtained in the previ-
ous step is used to learn prediction models. The functions
to learn are time, accuracy and SME (in Figure 2, error
and time models. These models can be generated with the
WEKA tool, as shown in the figure.

3. Given a new data set, a model, a function, and a learning
algorithm, and using the models generated in the previous
step, we obtain a prediction of the learning time, accuracy
and SME that will be obtained if we perform a new DM
process. These estimations are included in the PDDL file,
so they are used when planning new DM processes. Fig-
ure 3 shows an example of how the fluents of the dynamic
part of the PDDL problem file are updated. In the fig-
ure, the exec-time of a tree model and the support vector
machine model are updated, among others.

There are two ways to update the PDDL problem file with
these estimations: off-line and on-line. Off-line updates re-
quire to obtain information of many DM processes, use the
execution information to build the models, and employ these
models to update the PDDL problem file, which will stay
fixed in the future. On-line updates assume that, while new
data-mining processes are executed, new learning examples
are obtained, so the models can be dynamically updated, and
the PMML problem file is continuously updated.

24

Previous
executions.arff

1mp'|ements NeuralNetwork classification nomodel2)
= (model-instance-exec-time nnmodel2) {
= (model-instance-percentage-incorrect HAMOde

1mp'|ement5 NeuralNetwork classification nnmod
= (mode'l 1nstance exec-time nnmode'l3) Q

New
DM task.arff

Figure 3: Learning example in the PDM architecture.

References

De la Rosa, T.; Garcia-Olaya, A.; and Borrajo, D. 2007.
Using cases utility for heuristic planning improvement. In
Case-Based Reasoning Research and Development: Pro-
ceedings of the 7th International Conference on Case-
Based Reasoning, 137-148. Belfast, Northern Ireland, UK:
Springer Verlag.

Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Witten, 1. H., and Frank, E. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques. 2nd Edition,
Morgan Kaufmann.

