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Preface
The Demonstrations and Exhibits programme at ICAPS 2010 provides an opportunity for

planning and scheduling researchers and practitioners to demonstrate their state-of-the-art
implementations in action. The sessions allow the community to experience the latest contri-
butions while broadening the reach of novel methods in a relaxed social setting.

The 2010 Demonstrations and Exhibits programme follows the established antecedents at
ICAPS. An innovation this year was the co-location of the main demonstration session with the
AAMAS 2010 conference. The two conferences held an extended joint demonstration session
on Friday 14 May. During this morning session, participants from both conferences interacted
with exhibits spanning robotics, affective agents, scheduling, mixed-initiative planning, and
multi-agent planning and coordination. ICAPS exhibitors subsequently showcased their work
during the conference poster session. Votes from conference attendees were collected and an
award for Best Demonstration was announced at the conference banquet.

The Demonstrations and Exhibits programme features ten systems ranging from deployed
systems to research prototypes. Four of these systems were described in papers accepted to the
main ICAPS conference.

Steve Chien and his colleagues at the NASA Jet Propulsion Laboratory and Goddard Space
Flight Center demonstrate a timeline-based, heuristic greedy scheduling system in use to sched-
ule observations for the Earth Observing One satellite. They describe the range of constraints
modelled within the system and show a visualization of the scheduling search process with
direct comparison to the prior scheduling system.

Florent Devin and Yannick Le Nir of the L@RIS - EISTI Laboratoire describe an approach
to timetabling based on web services. They use a computational web service written in Prolog
for handling the resources and the constraints, and an internet Application written in ZK,
an open source AJAX web application framework. The application is integrated with Google
Calendar, which is used to insert constraints and to view the final timetable.

Stefan Edelkamp and his colleagues of the University of Bremen and of the University of
Dortmund examine how to translate concurrent C/C++ code into PDDL and propose a system
that runs heuristic search planners against the PDDL outcome to generate traces for locating
programming bugs. They demonstrate the aspects of parsing, generation of the dependency
graph, slicing, abstraction, and property conversion.

Tara Estlin and her colleagues at the NASA Jet Propulsion Laboratory demonstrate a com-
prehensive multi-agent event detection, communication, and planning & scheduling system to
enable coordination of multiple spacecraft assets for joint science campaigns. They show video
footage, demonstration data, and software traces from a series of demonstrations completed
in the JPL Marsyard, involving in-situ seismographic stations (landers), a rover, and two sim-
ulated spacecraft, and using communications infrastructure developed for the interplanetary
internet.

Mark E. Giuliano of the Space Telescope Science Institute and Mark D. Johnston of the
NASA Jet Propulsion Laboratory present tools that allow end users to effectively explore a
set of solutions produced by multi-objective algorithms in order to select a single solution for
execution. They present features of the Multi-User Scheduling Environment (MUSE) that
provides the ability to visualize higher dimension objective value spaces, and for multiple users
to converge on mutually acceptable schedules.

Malte Helmert of the Albert-Ludwigs-Universität Freiburg and Hauke Lasinger of LemnaTec
GmbH introduce the Scanalyzer planning domain, a domain for classical planning which models
the problem of automatic greenhouse logistic management. This domain was used as a bench-
mark in the sequential planning tracks of the last International Planning Competition. The
competition results show that domain-independent automated planners can find solutions of
comparable quality to those generated by specialized algorithms developed by domain experts,
while being considerably more flexible.
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Rajiv T. Maheswaran and his colleagues of the University of Southern California present
a decision support system to help people coordinate in the real world when performing a
shared task. The coordination is difficult since it requires simultaneously addressing planning,
scheduling, uncertainty, and distributed locations. In the current approach, end-users can
encode their intuition as guidance enabling the system to decompose large distributed problems
into simpler problems that can be solved by traditional centralized AI techniques. The work
comes from fielded trials of a large-scale project.

John Maraist and Robert P. Goldman of Smart Information Flow Technologies Inc. demon-
strate a plan execution engine, called Shopper, that interprets the LTML plan language. LTML
is an extension of the PDDL language with more expressive control structures and with sup-
port for semantic web services marked up in OWL-S. Goldman and Maraist show how one may
program simulated web services (or other actions) for use in experimentation, and how Shopper
operates with this simulation.

Javier Ortiz and his colleagues of the Universidad Carlos III de Madrid and Ericsson Re-
search Spain demonstrate a data mining tool, called PDM (Planning for Data Mining), based
on automated planning, that helps users to perform data mining tasks. Plans are data-mining
knowledge flows, i.e., sequences of data mining actions that should be executed over the initial
datasets to obtain the final models. Ortiz and colleagues demonstrate how any state-of-the
art planner can be used to generate a plan (the current implementation uses SAYPHI), which
is executed over the initial dataset to obtain the final model. Each plan or knowledge flow is
executed by the machine learning engine WEKA.

Tran Cao Son and his colleagues of New Mexico State University examine three conformant
planners (called CPA, DNF, and CNF) and compare them with other state-of-the-art confor-
mant planners. CPA was the recipient of the Best Non-Observable Non-Deterministic Planner
Award, IPC-2008. Their demonstration proposes techniques that contribute to the performance
and scalability of these planners and exposes the lessons learned during the development of these
planners.

These demonstrations illustrate the many-faceted nature of planning and scheduling appli-
cations and their underlying support technologies. The demonstrations present applications
that cross scopes from spacecraft operations, web services, multi-agent planning and schedul-
ing, and data mining tools. The goals of the applications range widely from reducing costs,
to better utilizing resources, to planning in uncertain environment, to coordinating groups of
users. Finally, the demonstrations illustrate the challenges involved in transferring applications
from research laboratories to the real world.

This proceedings of the 2010 Demonstrations and Exhibits programme contains abstracts
and extended abstracts that describe the systems showcased. Systems described in papers
presented in the main ICAPS conference are summarized here with abstracts; we refer to the
conference proceedings for their full description. In addition to this proceedings, supplementary
materials such as videos are found on the ICAPS’10 website.

We would like to thank the participants of the Demonstrations and Exhibits programme,
and all those that helped make the programme a success. We are grateful to the ICAPS
and AAMAS Chairs Joerg Hoffmann, Henry Kautz, Michael Luck and Sandip Sen, and to
the AAMAS Demonstrations Chairs Catherine Pelachaud and Iyad Rahwan. We express our
gratitude to the Local Arrangement Committees, chaired by Jorge Baier and Yves Lesperance,
and to the AAAI staff, for their generous efforts in arranging and organizing the events in
Toronto.

We hope that the Demonstrations and Exhibits programme provides its attendees lively and
fruitful discussions which may motivate and eventually bring promising approaches to schedul-
ing and planning from the laboratory to the real world.

– Ivan Serina and Neil Yorke-Smith
Exhibits and Demonstrations Co-chairs
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A Demonstration of Timeline-based Scheduling for the
Earth Observing One Mission

Steve Chien and Daniel Tran and Gregg Rabideau and Steve Schaffer
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

Firstname.Lastname@jpl.nasa.gov

Daniel Mandl and Stuart Frye
NASA Goddard Space Flight Center

Greenbelt, MD 20771, USA
{daniel.j.mandl, stuart.w.frye}@nasa.gov

Abstract

We demonstrate a timeline-based heuristic greedy scheduling system in use to schedule obser-
vations for the Earth Observing One Satellite. We describe the range of constraints modeled
within the system directly and as part of the candidate generation process. We show a visu-
alization of the scheduling search process with direct comparison to both the prior scheduling
system and simplified optimal upper bound schedulers. We present results documenting that
our heuristic scheduler produces results within 15% of the optimal upper bound and a signif-
icant (50%) increase in scenes over the prior scheduler with an estimated value of missions of
dollars US.

Copyright c
 2010, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights
reserved.
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Timetabling RIA in action

Florent Devin and Yannick Le Nir
L@RIS - EISTI

26 avenue des lilas
64062 Pau Cedex 9

FRANCE

Abstract

We present an Rich Internet Application to create timetabling
for real engineering school. In this application, we have re-
sources and constraints. Resources describe the timetable’s
context. Constraints are restrictions of resources. All lec-
tures are placed on a timetable composed of time-slots. For
timetabling, we use a computational web service written in
Prolog. Our application presents two different views, one for
the user, and one for theadmin.
Users can view all generated timetables and put in their own
constraints. The input of constraints can be done by two
ways, directly from our application, or via Google calendar.
To use Google calendar, users have to update the link of their
Google calendar.
Admin has many tasks to do. He has to plan all different
lectures that occur in a year. He also has to specify which
contributors teach which lecture, and to whom the lecture is
being given. Moreover, he has to input constraints for classes,
and possibly rooms’ unavailability. Then he has to validate
or invalidate users constraints. Finally he can generate one or
more timetables. He can also export all generated timetables
to Google calendar.

Introduction
In this paper we present an original approach to timetabling.
This approach is based on the concept of web services. To
be able to create timetables, there are two different parts in
our application. One is the Rich Internet Application (RIA),
and the other is the computational part. Before viewing how
our application runs, we have to define several terms. Then
we explain why we have chosen to create an RIA. Finally,
we describe the demonstration itself.

Definitions
First we have to definetime-slot and timetable. For us a
time-slot is a period with a start time and a fixed duration.
So a time slot is the minimal time interval we can find on a
timetable. A timetable is a consecutive list of time-slots on
which resources are planned.

Then we have to defineresources describing the context
of our application. In fact, we consider three resources:

Copyright c
 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• main resources: elements to plan (lectures, meetings, . . . );

• static resources: elements which are linked to main re-
sources (contributors, classes, . . . );

• dynamic resources: elements to include during the com-
putation (rooms, materials, . . . ).

Finally we have to defineavailability of resources. This
is all the possible associations between resources and the
amount of consecutive time-slots.Unavailability is the com-
plementary ofavailability in the timetable. Unavailability
can also called aconstraint.

Rich Internet Application
Rich Internet Application provides a very viable technol-
ogy (Duhl 2003), offering most desktop features. This tech-
nology can address many users, without any requirement,
because they are run on a web browser. By using a web
browser, users do not have to learned either a particular oper-
ating system, or a particular software to use our application1

(Rogowski 2007), (Driver and Rogowski 2007).
Our application is written with the ZK framework. ZK

is an open source Ajax web application framework (Seiler
2009). Yeh(2006) shows numerous advantages of using this
framework. Also ZK uses a centric server approach, which
simplifies the security of the application, and saves time dur-
ing the coding phase. Thus our application is written with
Java, and we can use Hibernates’ tools.

CSP and Prolog
Constraint Satisfaction Problem can efficiently model the
timetabling problem (Wallace 1996), (Frühwirth and Abden-
nadher 2003), (Jaffar and Maher 1994), (Carter and Laporte
1998). We can translate the timetabling problem with a CSP
on finite domain. The implementation of the computation
is written with Prolog. It communicates with the RIA us-
ing web services, and also directly with our database using
a classic ODBC.

Application’s architecture
Before describing our demonstration, we now introduce the
general architecture of our application. The central point,
for users, is the RIA. This RIA communicates with other

1Except our application

2



Figure 1: General architecture system

applications using web services. Currently, we have three
web services:

• Identification process: as our application is used by our
contributors, we have to include it in the existing IT sys-
tem. When someone tries to log into our application, we
ask the LDAP2 system if the user is authorizes to access
our IT system, via a web service.

• Computation process: the computation process is written
in Prolog. The RIA is written in Java. In order to commu-
nicate with each other, RIA and Prolog have to interact.
For the communication from the RIA to the Prolog part,
we use a web service.

• Constraints process: we can use Google calendar to input
constraints as the demonstration will show. Using Google
services is like using web services.

To store data, we use a database. This database is a
MySQL database. The RIA create/retrieve/update or delete
data with the help of Hibernate. The Prolog part, as men-
tioned above, uses a classical ODBC.

Timetabling RIA in action
Our demonstration will show the two different views of the
application, the one for users, and the one for the admin. In
this demonstration, you will see a lot of timetables. You will
note that the timetable has many colored time-slots. In fact,
there is one color for one feature’s classroom.

User demonstration
User can view all previously generated timetables, as timeta-
bles are public3 information. There are three different views
for timetables, one for contributor, one for class, and one for
classroom. A user can also modify his personal data, like a
link to his own Google calendar. He can also put unavail-
ability. A screen is dedicated to this function. In this screen,

2LDAP stands for Lightweight Directory Access Protocol
3By public, we mean that all contributors can be informed of

other timetables.

he can see all previously input constraints. He can also view
the state of the constraint, that is to say if the constraint has
been validated, or invalidated by the admin. User can do
nothing more.

Admin demonstration
The most important part of our demonstration is for the ad-
min’s functions. The admin have many tasks to do:

• generation of timetables;

• constraint keyboarding/checking;

• lectures planning function;

• lectures adjustment;

• contributors lectures association.

At the very beginning we have to create the classes, and
moreover the subgroups in each class. For example, as you
can see in the video, the class named “ING 1” is divided into
two subgroups, namedA andB. Doing this, we also specify
the size of each group, this will be useful later when we want
to create the timetable to consider a room’s size and group’s
size.

We may, also at the very beginning, define all existing
classroom. A classroom is defined by its location, features
and size. This step is essential as the computation considers
room’s size and feature to plan a course.

Then we have to specify which lectures can occur for
which class. Which means that we have to name the lec-
ture, and associate the class with it. Over the years this step
does not have to be repeated, as lectures for a year do not
often change.

Then we have to plan in advance the lectures that occur
during a year, a term, or a period. This phase is shown
on the third admin’s video. By planning the lecture in ad-
vance, we also specify the number of theoretical courses per
week, and also the number of practical courses per week.
At the same time, we also indicate the duration of courses
(per week). The difference between theoretical courses and
practical courses is that theoretical courses are done for the
entire class once, and practical courses are done once for
each subclass.

Once this is done, we can associate the contributors, as
shown also on the third video. We do not create contributors,
as we can synchronize the contributors via our LDAP ser-
vices. The only thing to do is to synchronize our database.
Once our database is updated, we can indicate which con-
tributor teach which courses, and also what is the feature
they need.

With this data, we can generate a valid timetable, if
contributor does not have any constraints. To generate a
timetable, we just have to choose the week, or a starting
week and an ending week, and ask for computation. This
can take time, about 20 seconds for a week. And you will
note that using a web service is totally appropriate. During
this step we can also ask for the export to Google calendar.
If we ask for it, all the generated timetables will be exported.
The export is done for all contributors, classes, classrooms
calendar. If contributors have their own calendar, we have
control the other calendars. These can be shared to offer

3



a complete view of the timetable for students, contributors,
and administration.

There is also a screen for changing a lecture in duration
for a particular week. We can also change the number of
courses for a week. For instance, if we have planned a lec-
ture occurring once a week both for theoretical and practice,
we can assume that for a particular week, there is no practi-
cal course, but the theoretical course is longer. If we are in
this case, or whatever similar case, we will use this screen.

We can also deal with constraints. To do this, there are
two screens, one more textual (as is shown on the user’s
video), and one more graphical (as is shown on the second
admin’s video).

As shown on the first admin’s video, we can put in an ex-
ceptional event. This event will be considered by the com-
putational part as a hard constraint.

All this functionality, user and admin, will be shown
during the demonstration, except the configuration phase.
The configuration phase is the keyboarding of contributors,
the naming of lectures, and the specification of rooms and
classes. If the audience wants, we can show this phase too.

Conclusion
We present an RIA for timetabling, which is fully functional.
This RIA uses web services to timetabling. It is important to
note that the workload of the admin is considerably reduced
by using our application rather than handwriting timetables.
We have paid a particular attention to simplifying the ad-
min’s works. Also this application can evolve by the use
of other web services. We also consider users’ habits, by
providing a way to use their own calendar.

References
Abbas, A., and Tsang, E. 2001. Constraint-based
timetabling-a case study.Computer systems and applica-
tions, ACS/IEEE international conference on 0:0067.

Abdennadher, S.; Aly, M.; and Edward, M. 2007.
Constraint-based timetabling system for the german uni-
versity in cairo. InINAP/WLP, 69–81.

Carter, M. W., and Laporte, G. 1998. Recent developments
in practical course timetabling. InPATAT ’97: Selected pa-
pers from the second international conference on practice
and theory of automated timetabling II, 3–19. London, UK:
Springer-Verlag.

Driver, E., and Rogowski, R. 2007. Rias bring people-
centered design to information workplaces. Forester Re-
search.

Duhl, J. 2003. White paper : rich internet application. IDC.
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Automated Program Checking via Action Planning

Stefan Edelkamp
University of Bremen

Germany

Mark Kellershoff
Dortmund University of Technology

Germany

Damian Sulewski
University of Bremen

Germany

Abstract

In this paper we translate concurrent C/C++ code into PDDL.
The system then runs heuristic search planners against the
PDDL outcome to generate traces for locating programming
bugs. These counter-examples result in an interactive de-
bugging aid and exploit efficient planner in-built heuristics.
Different aspects like parsing, generation of the dependency
graph, slicing, abstraction, and property conversion are de-
scribed. For data abstraction we provide a library, and for
increased usability the tool has been integrated in Eclipse.

Introduction

Planning via model checking (Cimatti et al. 1997) con-
siders the integration of verification technology into AI
planners. For model checking via planning by consider-
ing the rising effectiveness of planning search heuristics
in verification (Wehrle and Helmert 2009), a natural ques-
tion is to apply planning technology directly. The effec-
tiveness of translating model checking inputs into PDDL
has been documented by a series of preceding papers,
including the communication protocols (Edelkamp 2003),
Petri nets (Edelkamp and Jabbar 2006), and µ-calculus
formulae (Bakera et al. 2008), and graph transition sys-
tems (Edelkamp, Jabbar, and Lluch-Lafuente 2005).

In contrast to model checking (Clarke, Grumberg, and
Peled 1999) that relies on a model of the system to be
checked, program checking (Visser et al. 2003) aims at the
automated verification of programs given its source code by
analyzing the compiled executable. Typically, tools operate
on top of a virtual machine that has been extended to simu-
late different execution branches. Verification units that con-
sider checking the object code like JPF (Visser et al. 2000)
Steam (Leven, Mehler, and Edelkamp 2004) and Moon-
Walker (de Brugh, Nguyen, and Ruys 2009), complement
bounded software model checking tools like CBMC (Clarke,
Kroening, and Lerda 2004).

This paper proposes the automated transformation of
C/C++ sources into PDDL (Fox and Long 2003) to exploit
refined guidance inherent to heuristic search planners. The
rationale of applying heuristics is that directed model check-
ers (Edelkamp et al. 2008) quickly report short counter-

Copyright c
 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

examples. The rationale for a PDDL encoding are accurate
planning heuristics (Helmert and Domshlak 2009).

The choice of the C/C++ is urged by its wide-spread
use, rising thread parallelism in programs for the support of
multi-core machines, and the lack of advanced bug-finding
support. Tools like valgrind are able to find memory leaks,
but not to validate concurrent programs. As we concentrate
on the imperative core of C/C++, the results likely general-
ize to other programming languages like Java or Ruby.

The transformation into Level 2 PDDL is able to directly
uncover bugs. For the case a program cannot be analyzed
completely, different abstractions apply. Besides slicing the
program without loss of information, data abstraction con-
verts infinite state variables to finite domain, and to Level 1
PDDL. Dependencies among variables are automatically de-
tected by analyzing the parse of the source.

Annotated Parse and Dependency Graph

In program checking, sources are analyzed that have non-
deterministic effects. Such non-determinism can be due
to the interleaving of concurrent threads, unknown assign-
ments to variables, program and user inputs, explicit choice
points imposed by the programmer, or abstractions of deter-
ministic programs.

As C/C++ is a rather complex language (Stroustrup 1994),
we adapted JavaCC by Sreenivasa Viswanadha (published
in 1997) to parse the input. The parser yields an abstract
syntax tree, which we present as a navigational aid to the
programmer, and which is used for further processing. For
verification, the C/C++ code is annotated with a small set of
commands for its controlled execution:

• VLOCK(<variable>) restricts the access to the vari-
able <variable> in the currently invoked thread.

• VUNLOCK(<variable>) releases the lock to the vari-
able <variable>.

• BEGINATOMIC() dictates that the current thread cannot
be suspended.

• ENDATOMIC() terminates the atomic block selection
within a thread.

• VASSERT(<condition>) tracks <condition> to
be satisfied each time the program reaches it.

• RANGE(<variable>,<low>,<high>) offers non-
deterministic choices to a program.
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Figure 1: Dependency graph of a C/C++ program.

For transforming the source code, the input has to be made
avaailable in a dictionary data structure, while supporting
the conversion from infix (as used in C/C++) to prefix no-
tation (as used in PDDL). We implemented a hierarchy of
containers. Its structure represents the scopes of a program
and is exploited for constructing the object-oriented depen-
dency graph. An example is shown in Fig.1 together with
parts of the parse tree to its left.

The state of a C/C++ program includes information like
assignments to global and local variables, as well as stack
and dynamic memory contents. We assume variables of type
boolean, integer and real. The situation before the execution
of a program is called initial state, and the state of a program
at its termination is called (valid) end state. Additionally to
the variable assignments, a state contains information about
the program counter, denoting which transition has been or
will be executed. If the program is multi-threaded, a pro-
gram counter is maintained for every running thread includ-
ing the thread for main. For the conversion, we assume that
a static analysis, applied after parsing the code, can detect
the number of threads running concurrently.

The Translation into PDDL

The core motivation of translating the source of a program
into PDDL is to use planner in-built heuristic to drive the ex-
ploration process towards falsifying a property, e.g. in form
of a deadlock, a failed assertion/global invariance, or an ar-
ray access violation.

The output pleases the first two levels from the PDDL hi-
erarchy (Fox and Long 2003). In PDDL Level 1, states are
collections of true facts. It allows quantification over do-
main objects, disjunctive and negated preconditions, as well
as conditional effects. In PDDL Level 2, real-valued flu-
ents are available. Preconditions of actions cover arithmetic
expressions over the variables, while the effects can addi-
tionally modify value assignments.

Conversion of Variables For a C/C++ variable declara-
tion, like int a, we reserve a PDDL variable int a (allowing
real value assignments). Since a program can contain several
variables with name a, every PDDL variable is suffixed with
an additional id, such that for our case we infer int a 1, as it
is the first (and only) appearance of a that is converted. As
a can appear in different threads, we provide an additional
parameter to the PDDL predicate, yielding the expression
(int a 1 ?t - thread) to represent the variable declaration of
a. For variable int b the conversion is analogous. In short
terms, variable conversion is a mapping that assigns a plan-
ning variable to each program variable.

Variable Assignments For translating an assignment to a
variable into PDDL, we construct actions, which convert the
state in the planning model in the same way it does within
the program. As we have the parse of the expression avail-
able, the conversion from in- to prefix notation is immedi-
ate. The parameter is the thread, while the effect changes
the planning state equivalent to the assignment a=1000;:

(:action SimpleAssignment

:parameters (?t - thread)

:precondition (<predecessor has finished>)

:effect (and (assign (int_a_1 ?t) 1000 )

(<this action has finished>)

(not (<predecessor has finished>))))

Control Flow We use predicates to model line numbers.
Every action includes as a precondition that the predecessor
(line) has finished its execution. For example, in a sequential
execution line 20 has to finish before line 21 is processed. To
avoid ambiguities, every line number is attached to the file in
which the line is contained. It is also parameterized with the
thread that is invoked. Since in PDDL every possible action
is checked for execution, preconditions have been enlarged
to select the actions that are currently activated.

The action for the first line in the main program includes
(start T0) as a precondition triggered by the initial state,
since it does not have a direct predecessor. The first instruc-
tion of a method also contains a label that it has been called.

Consider the following simple example program fragment

#include "Thread.h"

[...]

class Example:public Thread {

public:

Example();

void run();

};

Example::Example(){}

void Example::run(){

int a;

int b;

a=1000;

b=20;

VASSERT(a < b);

}

After calling run, we have two concurrent threads: main
(thread t0), and the thread (t1) that has been called. If we
omit the details for thread invocation, the remaining pro-
gram logic has to include the variables a and b, their order
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and the constraints imposed. Hence, the PDDL equivalent
for the assignments a=1000 and b=20 is as follows.

(:action Example_cpp_Line_20

:parameters (?t - thread)

:precondition (Example_cpp_Line_19 ?t)

:effect (and (assign (int_a_1 ?t) 1000 )

(Example_cpp_Line_20 ?t)

(not (Example_cpp_Line_19 ?t))))

(:action Example_cpp_Line_21

:parameters (?t - thread)

:precondition (Example_cpp_Line_20 ?t)

:effect (and (assign (int_b_2 ?t) 20)

(Example_cpp_Line_21 ?t)

(not (Example_cpp_Line_20 ?t))))

An if-statement exists in two different variants (with or
without else block). A model without an else-branch is
not directly convertible in PDDL, as failing the if-condition
would not increase the program counter. We observe that
every action has access to its immediate predecessor, and
every action has at most two successors in case of a branch
and two predecessors in case of a join. A while-statement is
an if-statement featuring a backward jump.

For if-statements we introduce a virtual-else branch. The
if-statement itself would vanish as the conditions are im-
posed as additional preconditions to the actions. But without
modeling the if-statements explicitly, there is a subtle prob-
lem in modeling nested if-statements. Consider the small ex-
tension of the running example in Fig. 2. If one uses one ac-
tion per instruction, then implementing correct precedences
among the if statements is tricky, i.e., to connect an else-
branch to the corresponding if. Therefore, we decided to in-
clude an additional flag and an additional action for starting
and ending an if- or else- part.

void Example::run(){

int a;

int b;

a=1000;

b=20;

if (a > b) {

if (a > 20) {

a=20;

} else {

a=0;

}

} else {

a=1000;

}

VASSERT(a < b);

}

b=20;

VASSERT( a < b);

State

Transition

(a>b)

∧

(a>20)

a=20;

(a>b)

∧

(a<=20)

a=0;

(a<=b)

a=1000;

Figure 2: A nested if-statement and induced control flow.

Fig. 3 relates the source of a simple while-statement to
the according automaton, that is used to monitor the flow of
control in the PDDL code.

Model Checking Statements An assert-statement is split
into two parts. One branch considers the violation of the
assertion, in which case the predicate assertionviolation is
set, the other branch continues with the flow of instructions.

void Example::run(){

int a;

int b;

a=1000;

b=20;

while (a > b) {

a=20;

b=1000;

}

VASSERT(a < b);

}

b=20;

b=1000;

a=20;

VASSERT (a < b);

State

TransitionWHILE

(a>b)

ELSE

(a<=b)

WHILE

(a>b)

ELSE

(a<=b)

Figure 3: A while program and induced control flow.

When searching for the violation of safety properties, this
predicate is included as a goal condition.

The lock-statement denotes that a thread requires exclu-
sive access to a variable. The first thread that locks the vari-
able has top priority, such that all upcoming accesses to the
same variable are rejected. The PDDL model is extended in
the sense that the actions include a precondition for locked
variables, while avoiding multiple locks. A proper locking
mechanism yields checks of invalid end states. A supple-
mentary action wait is generated, that indicates that a thread
waits for a resource. If all threads are blocked, a deadlock
has occurred, an a goal achiever is triggered.

For atomic blocks, in the PDDL model 2 new predicates
are inserted: atomic denoting that the execution is in atomic
mode, and isatomic ?t - thread denoting which thread is ac-
tually atomic. Most ordinary actions are extended by the
following precondition atomic ⇒ (isatomic ?t). The end
of the block generates an action without further specialized
preconditions that deletes atomic and (isatomic ?t).

Complex Statements For indexed variable access first the
index is determined then the access to the array is executed.
As PDDL does not provide a mechanism to index variables
with numbers, we allow the user to adjust upper bounds pro-
vided by the parser (in PDDL 3.1, indirect variable access
is available but only a few planners support the extension).
The conversion of C++-objects into PDDL is possible, if the
initialization uses the new-operator and gets assigned to a
unique name. The new-statement induces the reservation of
a PDDL object with a reference to this object; the variables
of the class contain an additional parameter, whose type is
the class name.

Methods PDDL models cannot generate objects dynam-
ically. The only methods that are currently supported are
those that have integer∗ → integer or integer∗ → void in
their signature.

Methods are converted in actions that are triggered by set-
ting a special predicate. The parameters are found on the
method-stack, and the solutions are found in a special so-
lution register, accessible from the calling action, similar to
what is done in an ordinary executable. Actions are indexed
s.t. more than one call is possible.
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Mutex Producer-Consumer BubbleSort10 8-Puzzle

Program l s t t s t l s t l s t

StEAM DFS 66 742 90 122 353 59 594 1184 124 36096 70366 6552

StEAM BF 30 1630 198 29 4383 690 594 1774 88 86 7836 269

FF EHC 27 747 6 20 23 2 - - - - - -

FF Best-First 27 251 4 20 3405 10 - - - - - -

FF DA EHC 28 39 28 20 33 2 661 670 1312 115 932 2585

MFF DA EHC 28 39 108 20 34 56 661 670 8938 361 56257 1177572

MFF DA BF 27 922 877 20 3405 1609 661 73294 79674 99 4113 96291

Figure 4: Results for benchmarks; l denotes the length of the
counter-example, s the number of states, t the CPU time in
milliseconds, DA data abstraction, BF best-first search, and
EHC enforced hill climbing applied in FF/MFF (MetricFF).

Abstraction We mainly support data abstraction (Merino
et al. 2002). In the neg-pos-zero abstraction, for example,
integers are projected to three values of being either posi-
tive negative, or equal to zero. If two negative or two posi-
tive values are multiplied, the result is determined, while for
mixed multiplication, different options are possible. An al-
ternative is an odd-even abstraction with obvious semantics.

Numerical abstractions have be implemented using ab-
straction libraries. The interface serves as a macro that is au-
tomatically extended to enrich the initial state and the PDDL
operators to realize abstraction. The dependency graph then
helps to deduce the set of all variables that are affected.

Programming Environment

The implementation used the following components:
Eclipse 3.3 - Europa + CDT, the planner Metric-FF (Hoff-
mann 2003), and Java SDK 6 (includes Java-Script). The ab-
straction plugin that we have developed (see Fig. 5) consists
of the GUI for parameterizing the algorithms, the parser, the
dependency graph data structure, and the error trailer.

� �

���������	
����


������	����

���	�������

Figure 5: Abstraction Plugin and Error Trailer in Eclipse.

Figure 4 compares the performance for some simple C++
benchmarks with the one of the C/C++ program checker
StEAM (Mehler 2006), which systematically analyzes a pro-
gram as an executable in object code and complies with in-
and output. In the BubbleSort and 8-Puzzle, the program

checker is faster, while in planning only data abstraction
solves the problem. In the communication protocol exam-
ples, the analysis via PDDL is superior.

We do not claimed to have a full translation of C/C++
to PDDL. For example given that current PDDL is inher-
ently static (it does not allow dynamic object creation), there
are obvious restrictions to the expressiveness of sources that
can be processed (no dynamic memeory allocation, no incre-
mental invocation/deletion of threads etc). Nonetheless, the
results indicate that PDDL can yield exploration advances.
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We demonstrate the application of: multi-agent 

organization, automated science event detection [Castano 

et al. 2005], inter-agent communication via interplanetary 

internet [Burleigh et al. 2006], and automated planning & 

scheduling [Estlin et al. 2007, Chien et al. 2000] to enable 

opportunistic science observations to be autonomously 

coordinated between multiple spacecraft. Coordinated 

spacecraft can consist of multiple orbiters, landers, rovers, 

or other in-situ vehicles (such as an aerobot). Opportunistic 

science detections can be cued by any of these assets where 

additional spacecraft are requested to take further 

observations characterizing the identified event or surface 

feature (for a more complete description see [Estlin et al. 

2010]).    

We show video footage, demonstration data, and software 

traces from a series of demonstrations completed in the 

JPL Marsyard involving in-situ seismographic stations 

(landers), a rover [Schenker et al. 2001], and two simulated 

spacecraft (similar to [Chien et al. 2005] on EO-1), using 

communications infrastructure developed for the 

interplanetary internet [Burleigh et al. 2006].  The 

demonstration shows parts of detection and response for 

atmospheric events adapted from software operation on the 

MER rovers on Mars [Castano et al. 2007] as well as 

seismographic events [Huang et al. 2010], highlighting the 

ability of multiple  assets to observe the same phenomena 

from multiple complementary perspectives (e.g., as in 

[Chien et al. 2005] for terrestrial applications ). 
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Extended Abstract  

Multi-objective algorithms for scheduling offer many 
advantages over the more conventional single objective 
approach.  By keeping user objectives separate instead of 
combined, more information is available to the end user to 
make trade-offs between competing objectives.  Unlike 
single objective algorithms, which produce a single 
solution, multi-objective algorithms produce a set of 
solutions, called a Pareto surface, where no solution is 
strictly dominated by another solution for all objectives.  
Algorithms for solving multi-objective scheduling 
problems have been developed that are effective in 
building a uniformly sampled approximation of the Pareto 
surface.  The goal of this demonstration is to present tools 
that allow end users to explore the Pareto surface trade-off 
space in order to select a single solution for execution.  
This is challenging in at least two manners: First, the 
objective trade off space often has a high dimensionality 
making it hard for users to see patterns in the data using 
conventional graphical interfaces; Second, the nature of 
many multi-objective scheduling problems requires 
multiple users to be heavily involved, each such user 
contributing one or more objectives that reflect their 
interest in the outcome of the scheduling process. We 
present features of the Multi-User Scheduling Environment 
(MUSE) that provides the ability to visualize higher 
dimension objective value spaces, and for multiple users to 
converge on mutually acceptable schedules.  

System Architecture 

The visualization tools described below are part of the 

Multi-User Scheduling Environment (MUSE) overall 

architecture, as illustrated in Figure 1 (Johnston and 

Giuliano 2009, Johnston and Giuliano 2010). MUSE 

provides a generic environment for integrating existing 

tools (where they exist), providing persistent storage for 

various types of schedule data, and supporting both online 

and offline collaboration (in consideration of distributed 

users working across multiple time zones). MUSE 

incorporates server components (Fig. 1 lower half) as well 

as components that are resident on the user’s workstation. 

MUSE distinguishes generic components (left) from those 

that may be highly domain specific (right). The 

architecture is designed so that domain specific 

components can be run as separate processes or can be 

compiled into the same image as the generic code. 
 On the server side, the Multi-Participant Coordinator 
acts as a central “clearing house” for schedule data, 
participant’s selections, and scheduling runs. It provides an 
interface that communicates with the individual 
participants, providing up to date schedules, schedule 
status, and other participant selections of objective value 
ranges. The Multi-Objective Scheduler provides the 
evolutionary algorithm optimizer that evolves a population 
of candidate schedules towards the Pareto-optimal surface. 
The Application Map provides a transformation between 
decision variable values and domain-specific scheduling 
decisions as represented and evaluated in the Domain 
Scheduling Engine components. The Multi-Objective 
Scheduler supports parallel evaluations of schedules, 
which can frequently help speed the generation of a Pareto 
surface for participants. The Domain Scheduling Engine is 
the application-specific scheduling software that MUSE 
uses to evaluate candidate schedules. This evaluation 
utilizes the decision variable values, and can potentially 
perform internal conflict resolution or optimization steps 
on its own before returning a set of objective function 
values to the Multi-Objective Scheduler.  

Visualization Tools 

The example visualizations shown in this demonstration 
will be based on an application of MUSE to scheduling the 
James Webb Space Telescope (Giuliano and Johnston 
2008). In this domain there are three objectives. To 
minimize gaps in the schedule,  to minimize momentum 
build-up in telescope reaction wheels used to move the 
telescope, and to minimize observations which would be 
dropped as they missed their last opportunity to schedule. 
 The main focus of this demonstration is the Participant 
Trade Off GUI.  The goal of this tool is to provide users of 
the system the ability to explore a Pareto-surface of 
potential solutions and to converge on acceptable solutions 
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for execution.  A challenge for the MUSE system is 
visualizing Pareto-surfaces.  The traditional approach is to 
display the surface as a series of X-Y trade-off plots.  For 
example, Figure 2 illustrates a trade off surface for a JWST 
schedule run. Although, X-Y plots are intuitive to 
understand they have several problems.  First, the number 
of plots grows geometrically as the number of objectives 
increases.  Second, it is hard to connect a point in one plot 
with the corresponding points in other plots.  An alternate 
view of the data is provided in Figure 3 by a parallel 
coordinate plot that solves the problems with X-Y plots.  In 
this plot each solution is represented by a single colour 
coded line.  The values are plotted horizontally on a 
normalized scale.  Coordinate plots solve the problems 
with X-Y plots but can be unreadable with a large number 
of points on a Pareto-surface. The important point here is 
that no single view of the data is always best and that the 
interface needs to provide multiple views.  With this goal 
the MUSE interface provides several additional features 
that allow the user to dynamically explore a Pareto-surface. 
First, MUSE provides a tabular view of the data that 
supports dynamic sorting (figure 5 top). Second, we 
provide a plot for each criteria that graphs the criteria 
values in order (Figure 5 bottom). Third, the user can select 
a solution in one plot and have the point highlighted in all 
of the plots (Figure 5). Each of the plots is linked so 
selection a solution or region in one plot highlights the 
corresponding solution or region in other plots.  Ongoing 
MUSE development is exploring additional dynamic 
graphical capabilities such as the ability to collapse a N 
dimensional objective space to an N-1,2,… dimensional 
objective space. 
 Multi-Objective applications often have different 
constituents that are more or less concerned with specific 
mission objectives and criteria.  For example, engineering 
staff may be more concerned with telescope lifetime issues 
such as momentum usage in JWST.  In contrast science 
teams would be more concerned with not dropping 
observations (i.e. missing the last opportunity to schedule 
an observation). A goal of the MUSE system is to allow 
multiple constituents to converge on an acceptable region 
of the Pareto-surface.  To this end the MUSE system 
models different users for an application (e.g. JWST 
engineering, JWST science operations). Users can login 
and select an active schedule interval to work on from a list 
of active intervals.  For a schedule interval a user can select 
preferred regions of the solution space. Figure 5 shows the 
interface after the JWST engineering staff has entered a 
preference for a momentum build up.  User preferences are 
stored on disk and can be viewed by other users. Figure 6 
shows the interface run from the perspective of the JWST 
science operations staff after entering a preference for 
dropped observations.  The interface shows solutions 
acceptable by both, one, and no users.  The interface 
supports an administrative user who can make the final 
selection or override user preference if no agreement is 
available.  

Conclusions and Future Work 

Visualization tools for the MUSE system were described 
that allow multiple users to explore Pareto-surfaces. The 
tools provide multiple views of the data that can be 
configured to allow users to dynamically explore the 
search space.  The tools allow multiple users with different 
priorities to specify preferences and to converge on a set of 
solutions acceptable to all parties. Future work on the 
system will add additional dynamic visualization features 
and will evaluate its use on domains with a higher number 
of objectives. 
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Abstract

We introduce the Scanalyzer planning domain, a domain for classical planning which models
the problem of automatic greenhouse logistic management.

At its mathematical core, the Scanalyzer domain is a permutation problem with striking simi-
larities to common search benchmarks such as Rubik’s Cube or TopSpin. At the same time, it
is also a real application domain, and efficient algorithms for the problem are of considerable
practical interest.

The Scanalyzer domain was used as a benchmark for sequential planners at the last Inter-
national Planning Competition. The competition results show that domain-independent au-
tomated planners can find solutions of comparable quality to those generated by specialized
algorithms developed by domain experts, while being considerably more 
exible.

Copyright c
 2010, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights
reserved.

15



Real-Time Multi-Agent Planning and Scheduling in Dynamic Uncertain Domains ∗

Rajiv T. Maheswaran, Craig M. Rogers, Romeo Sanchez and Pedro Szekely
University of Southern California - Information Sciences Institute

4676 Admiralty Way #1001, Marina Del Rey, CA, USA

Abstract

Creating decision support systems to help people coordinate
in the real world is difficult because it requires simultane-
ously addressing planning, scheduling, uncertainty and distri-
bution. Generic AI approaches produce inadequate solutions
because they cannot leverage the structure of domains and the
intuition that end-users have for solving particular problem
instances. We present a general approach where end-users
can encode their intuition as guidance enabling the system to
decompose large distributed problems into simpler problems
that can be solved by traditional centralized AI techniques.
Evaluations in field exercises with real users show that teams
assisted by our multi-agent decision-support system outper-
form teams coordinating using radios.

Introduction

Teams of people need to coordinate in real-time in many
dynamic and uncertain domains. Examples include disaster
rescue, hospital triage, and military operations. It is possible
to develop a plan a priori for these domains, but many parts
must be left unspecified because people won’t know exactly
what needs to be done until they are executing the plan in
the field. Additionally, requirements and tasks can evolve
during execution.

Our work addresses a fundamental multi-agent systems
endeavor of creating decision support systems that help hu-
mans perform better in real-time dynamic and uncertain do-
mains. The technical challenges to compute good solu-
tions for such domains have been well documented (Mur-
phy 2004; Groen et al. 2007; Boutilier 1999). There are two
main contributions in this paper: (1) we present a generic
methodology for human guidance for planning and schedul-
ing activities, and (2) we discuss an extensive investigation

∗The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032. The
U.S.Government is authorized to reproduce and distribute reports
for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
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implied, of any of the above organizations or any person connected
with them. Approved for Public Release, Distribution Unlimited.
Copyright c
 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as to its usefulness in a thorough field exercise conducted by
a third party.

In practice, it is possible to address specific domains with
custom algorithms that use powerful heuristics to leverage
the structures unique to that domain. These solutions are
expensive to create as even these domains involve planning,
uncertainty and distribution. The goal remains to develop
generic approaches that produce good solutions that help hu-
man teams in many domains.

We introduce a new approach, STaC, based on defining
collections of Subteams each with Tasks to perform and
Constraints on how they should be performed. The premise
that people have good intuitions about how to solve prob-
lems in each domain and this approach both matches this
intuition and can be matched to generic models of task allo-
cation problems. The idea is to enable users to encode this
intuition as guidance for the system and to use this guidance
to vastly simplify the problems that the system needs to ad-
dress.

The key to STaC is using the model and guidance to pro-
duce sufficiently smaller task structures that can be central-
ized so that a single agent can determine who does what,
when and where with respect to these significantly simpler
task structures. This mitigates the distribution challenge
and enables using auxiliary solvers based on established AI
techniques which produce good solutions at a smaller scale.
These smaller task structures are solved independently as-
suming that the human guidance has addressed any signif-
icant dependencies. While this may not be the case in all
domains, in many scenarios including ours, humans are far
better at identifying effective structural decompositions than
automated techniques.

STaC addresses tracking the dynamism in these task
structures, the transitioning of agents assignment between
these smaller task structures and the invocation of auxiliary
solvers. Given that the task structures are treated indepen-
dently and sufficiently small to be centralized, we call them
sandbox reasoners. The sandbox reasoners required in each
domain are different, so custom code must be written for
each domain. However, the benefit of the approach is that
sandbox reasoners are significantly simpler than the custom
solvers required to produce a custom solution for a domain.

The paper is organized as follows. The next sections intro-
duces the real-world domain where our approach was tested
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Figure 1: Field Exercise Images from Rome, New York,
USA

followed by related work. We then describe the details of the
STaC approach and the particular sandbox reasoners used in
our example domain. We close with evaluation results, con-
clusions and directions for future work.

Field Exercises

The field exercises were based on a simulated disaster res-
cue domain. The challenge was to show that a human-team
supported by intelligent agents could outperform a human
team operating by themselves. The first two exercises were
held in the city of Rome, New York, USA, and the sec-
ond three were in Stanton Wood Park in Herndon, Virginia,
USA. Images of the field exercise in Rome are shown in
Figure 1 and a map of the sites and road network of Stanton
Wood Park are shown in Figure 2. They were organized and
evaluated by independent parties contracted by the DARPA
(Defense Advanced Research Projects Agency) Coordina-
tors program. The rules of the field exercise were created
collaboratively by the teams building coordinator agents,
the independent evaluation team, and subject matter experts.
The specific instances or scenarios that comprised the test
problems were chosen by the independent evaluation team.

Various locations were selected as sites and a feasible road
network was constructed. If the site was populated, it could
have injured people in either critical and serious condition.
Populated sites would also have gas, power and water sub-
stations which may have been damaged. In addition, any
site could have facilities such as a hospital, clinic, ware-
house, gas main station, power main station and water main
station. A team would obtain points by rescuing injured to
hospitals or operational clinics (before a deadline associated
with each injured person) and by repairing main stations and
substations. The goal of a scenario was to accumulate as
many points as possible before the scenario deadline.

The teams were composed of 8 field agents and 2 com-
mand agents. Each agent had a different set of skills. Three
specialists in gas, power and water could perform major and
minor repairs in their respective skill area. The medical spe-
cialist could load any type of injured person by themselves.
The remaining four survey specialists could have any col-
lection of skills involving minor repairs. The field agents

could move throughout the field exercise area and perform
actions. The command agents were located at a base where
they helped to coordinate the activities of the team. The Ra-
dio Team communicated only with radios. Our CSC Team
had ruggedized tablet computers on which our agents were
loaded, in addition to radios. The tablets had cell modems
and GPS.

Many outcomes were revealed during the game for which
little or no likelihood information was given a priori, i.e.,
no probability distribution functions over outcomes. Teams
did know the space of possible outcomes beforehand. A sur-
vey for damage at a main station or substation revealed the
number and type of problems chosen from a set of known
possible problems. A survey for injured at a populated site
revealed the number, types and deadlines for the injured at
that site. As the result of a survey, any team member might
be injured, forcing them to go to an operational medical fa-
cility to recover before proceeding with any other action. A
survey could also reveal that the vehicle of the agent do-
ing the survey had failed and would require a vehicle repair
before the agent could travel to any other site. While travel-
ing, agents could encounterroad blocks which could not be
passed until fixed. Travel and repair times could vary and
repairs could fail. These dynamic and uncertain events were
planned parts of the exercise. In addition, the teams had
to address uncertainties inherent in the environment, such
as noisy radios, weather, and other activities in the public
settings. Furthermore, most of these outcomes were only
observable by the agent encountering the outcome.

The independent evaluation team chose the scenario from
the space of possible exercises and informed the teams of
the details below one day prior to the test: (1) the locations
of populated sites and facilities, (2) the road network and
ranges on travel times between sites, (3) a range for the to-
tal number of injured at each site, (4) the points for rescu-
ing each type of injured, which could vary by type and site,
(5) the points for repairing each substation or main station,
which could vary by type and site, (6) potential problems af-
ter surveys for damage and corresponding repair options, (7)
ranges on repair times, (8) likelihoods of failure for every re-
pair activity, and (9) the skills of the survey specialist agents.
The deadlines (for the scenario and injured) did not allow
teams to do all possible repairs and rescues. The teams had
one day to form a high-level strategy. The only element of
uncertainty which could be modeled accurately with a prob-
ability density function was (8). When a team member com-
pleted a repair activity, they would call the evaluation team,
which would report whether the repair was successful or a
failure. The range in (3) was respected by the scenario de-
signers, i.e., the number of injured did not fall outside the
given range.

There were many rules and couplings that forced agents
to coordinate. To do surveys, gas and power substations
at the site had to be off, which required agents with those
skills. Two agents had to be at the same location simulta-
neously to load a critically injured person or repair a road
block. Repair options could involve multiple tasks and re-
quire two agents with certain skills to act in synchrony or
in a particular sequence. Some repair options required kits
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Figure 2: Stanton Woods Park, Herndon, Virginia, USA

which guaranteed their success, but kits were available only
at warehouses. Agents could transport at most one entity,
i.e, either a repair kit or a single casualty. A substation was
considered repaired only if the corresponding main station
was also repaired. A clinic was not operational until all sub-
stations at the site and all corresponding main stations were
repaired. These are examples of rules that, along with the
dynamism and uncertainty in outcomes mentioned earlier,
created challenging real-time real-world distributed coordi-
nation problems.

The goal was to see if humans operating with radios and
a multi-agent decision-support system could outperform hu-
mans operating with only radios. While some aspects of a
real-world disaster scenario were abstracted, we believe the
field exercises closely approximated the challenges of help-
ing a human team solve difficult real-world problems.

Related Work
The STaC framework was developed during the DARPA
Coordinators program. In the first two years, DARPA ran
competitive evaluations on simulated scenarios, and CSC
(Criticality-Sensitive Coordination), the underlying system
behind the STaC framework, won such evaluations by con-
siderable margins against two competing approaches based
on Markov-Decision-Processes (MDPs) (Musliner et al.
2006) and Simple Temporal Networks (STNs) (Smith et al.
2007).

The MDP-based (Musliner et al. 2006) approach ad-
dressed the infeasibility of reasoning over the joint state
space by setting the circumstance set to a subset of local
state space that is reachable from the current local state,
unrolling the state space by doing a greedy estimation of
boundary values. It biased its local reward function on the
commitments made by the agents during execution. How-
ever, such approximations lose critical information, explor-
ing state spaces that are far from good distributed solutions.

The STN framework (Smith et al. 2007) addressed tem-
poral uncertainty by using a time interval (instead of a point)

as the circumstance that denoted feasible start times for a
method to be executed. The system used constraint prop-
agation to update the start intervals of the agents’ activities
during execution. A policy modification phase was triggered
if execution was forced outside the given set of intervals.
One of the problems of this approach is that agents tried
to maintain consistency and optimize their local schedules,
losing information that was needed to timely trigger policy
modifications for their schedules.

We encoded scenarios of the field exercise as planning
problems using PDDL (Planning Domain Definition Lan-
guage) (Fox and Long 2006). The motivation was to identify
to the extent to which current automated planning technol-
ogy can address complex distributed, resource-driven, and
uncertain domains. Unfortunately, this proved to be ex-
tremely difficult for state-of-the-art planning systems. From
the set of planning systems tried, only LPG-TD (Gerevini
et al. 2005), and SGPLAN (Chen, Wah, and Hsu 2006)
solved a few simplified problems, after uncertainty, dy-
namism, non-determinism, resource-metrics, partial observ-
ability and deadlines were removed. Planners were unable
to scale to more than 5 sites. LPG-TD produced solutions
more efficiently but less optimally.

In general, mixed-initiative approaches where humans
and software collaborate can often produce better solutions
for complex problems. Mixed-initiative planning systems
have been developed where users and software interact to
construct plans. Users manipulate plan activities by remov-
ing or adding them during execution while minimizing the
changes from a reference schedule (Ai-Chang et al. 2004;
Hayes, Larson, and Ravinder 2005; Myers et al. 2003).
Most of these systems are centralized, so humans and sys-
tems are fully aware of the entire plan, and of the conse-
quences of updating it. In our scenario, agents (including
humans) have subjective views of the world, and any deci-
sion may trigger many unknown global effects.

Multi-agent systems for disaster domains have been stud-
ied in the context of adjustable autonomy. The idea is to
improve limited human situational awareness that reduces
human effectiveness in directing agent teams by provid-
ing the flexibility to allow for multiple strategies to be ap-
plied. A software prototype, DEFACTO, was presented and
tested on a simulated environment under some simplifica-
tions (e.g., no bandwidth limitations, reliable communica-
tions, omnipresence) (Schurr et al. 2005).

Conclusions and Future Work
Our 18-month experience working on a system to compete
against radio teams in the field exercises provided evidence
for the benefits of our approach. Our starting point was
our generic CSC system developed during the previous two
years to solve generic, synthetically generated problem in-
stances specified in CTAEMS. Even though the synthetically
generated problem instances were generated according to
templates that combined “typical” coordination situations,
the resulting problems were not understandable by humans.
In contrast, the field exercise problems are more natural, and
appeal to our lifetime of experience coordinating every day
activities. Intuitions about space, distance, time, importance
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and risk all came into play, enabling teams of humans to
devise a sophisticated strategy with a few hours of brain-
storming. It became obvious early on that the generic CSC
system would not be able to produce solutions comparable
to the desired sophisticated, coordinated behavior of human-
produced strategies.

Our existing system had performed extremely well in
Phase 2 by using our Predictability and Criticality Metrics
(PCM) approach. In the PCM approach, the policy modifi-
cations that agents consider are limited to those that can be
evaluated accurately through criticality metrics that capture
global information. These policy modifications were simple
and thus the reasoners that implemented them were simple
too.

For the field exercises, we extended our approach so that
policy modifications would be constrained using the guid-
ance provided by the users. This guidance was in the form
of a sequence of sites to visit. The system was left to make
decisions that we believed it could evaluate accurately (e.g.,
how to perform repairs or rescue injured at a single site). The
system relied on the TCR-set criticality metric to determine
how to move agents along the list of guidance elements. The
approach worked well. Our users outperformed the radio
team because they were able to communicate their strategy
to their agents, and the system optimized the execution of
the strategy, adapting it to the dynamics of the environment.

The field exercises in Rome used a simpler language for
specifying guidance. It had a single guidance group con-
sisting of the entire set of agents. Also, it did not support
constraints to control the capabilities within a guidance el-
ement. In that evaluation, our system remained competitive
with the radio team, but lost in two out of the three scenarios.

The final language for guidance was inspired by our ob-
servations of the radio-team strategies, extensive discussions
with subject matter experts and extensive numbers of simu-
lations. We noted that while the human team could not ex-
ecute a strategy as well as we could, the space of strategies
that they were able to engage were far more sophisticated
than ours. This led to the creation of a the more sophisti-
cated formalism for capturing human strategic guidance.

We have taken the first step towards generic coordination
technology that end-users can tailor to specific problem in-
stances. The approach was validated in one domain thanks
to the extensive and expensive evaluations carried out by the
DARPA Coordinators program. In the future, we hope to
be able to apply this approach to other application domains.
One key area that needs to be investigated is extensions to al-
low human users to make guidance adjustments during ex-
ecution. There are situations where a series of outcomes
either invalidates an assumption when creating the a priori
guidance or creates an opportunity to improve on that guid-
ance. Addressing this requires the ability for human users
to quickly and easily understand and modify the guidance
while it is being executed. Even more advanced steps would
be evaluating and ultimately generating appropriate online
guidance modifications.
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Abstract

In this demo we present Shopper, a plan execution engine that facilitates experimental evalua-
tion of plans. Shopper interprets the LTML plan language, which extends PDDL in two major
ways: with more expressive control structures, and with support for semantic web services
marked up in OWL-S. LTML’s command structures include not only conventional ones such as
branching, iteration, and procedure calls, but also features needed to handle HTN plans, such
as precondition-filtered method choice. Unlike conventional programming languages, LTML
supports interaction with the agent’s belief store, so that its execution semantics line up with
those assumed by planners. LTML actions extend PDDL actions in having outputs as well as
effects, which means that they can support actions that sense the world; an important special
case of this is semantic web services, which reveal information about a state hidden from the
agent. To support experimentation as well as action in the real world, Shopper accommodates
multiple, swappable implementations of its primitive action API. For example, one may inter-
act with real web services through SOAP and WSDL, or with simulated web services through
local procedure calls. In our demonstration we will show what LTML plans look like, relating
them to their PDDL ancestors. We will show Shopper interpreting a plan whose individual
steps are web service invocations. Then we will show how one may program simulated web
services (or other actions) for use in experimentation, and show how Shopper operates with
this simulation.
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Introduction

We present a tool, PDM (Planning for Data Mining), based
on Automated Planning that helps users (non necessarily ex-
perts on data mining) to perform DM (Data Mining) tasks.
The starting point is a definition of the DM task to be car-
ried out and the output is a set of plans that are executed in
a DM tool to obtain a set of models and statistics. Plans are
data-mining knowledge flows, i.e. sequences of DM actions
that should be executed over the initial datasets to obtain the
final models. However, the number of feasible plans that
solve the same DM task is huge making necessary to rank
them by some criterion. In a first approach, the ranking is
performed following some expert estimations on the desired
mining-results of the DM actions. Afterwards, these estima-
tions are improved using machine learning techniques. In or-
der to define the DM task, we use emerging standards, such
as PMML (Predictive Model Markup Language). PMML is
the leading standard for statistical and DM models and sup-
ported by over 20 vendors and organizations. With PMML,
it is straightforward to develop a model on one system us-
ing one application and deploy the model on another system
using another application. The PMML file is automatically
translated into a planning problem described in PDDL2.1.
So, any state-of-the art planner can be used to generate a
plan (or plans), i.e. the sequence of DM actions that should
be executed over the initial dataset to obtain the final model.
Each plan or knowledge flow is executed by a machine learn-
ing engine. In our case, we employ one of the most used
DM tools, WEKA (Witten and Frank 2005). In WEKA,
knowledge flows are described as files with a specific for-
mat, KFML, and datasets are described as ARFF (Attribute-
Relation File Format) files. The results of the DM process
can be evaluated, and new plans may be requested to the
planning system.

Background

This section describes two of the three languages used in
this work and the files used in the learning component.
First, we describe PMML (Predictive Model Markup Lan-
guage), an XML based language for DM. Then, we describe
KFML (Knowledge Flow for Machine Learning), another

Copyright c
 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

XML based language to represent DM knowledge flows for
the WEKA tool (Witten and Frank 2005). The third lan-
guage used in PDM, PDDL (Planning Domain Definition
Language), is well known in the planning community. Fi-
nally we describe the type of files used in the learning pro-
cess.

The Predictive Model Markup Language (PMML)

PMML is an XML-based markup language developed by
the Data Mining Group (DMG) to provide a way for appli-
cations to define models related to predictive analytics and
DM and to share those models between PMML-compliant
applications. 1 It is composed of five main parts:

• The header contains general information about the file,
like the PMML version, date, etc.

• The data dictionary defines the meta-data, or the descrip-
tion of the input data or learning examples.

• The transformation dictionary defines the applicable func-
tions over the input data, like flattening, aggregation, av-
erage or normalization among many others. This knowl-
edge defines the actions that can be applied over the data
in the first step of the mining process.

• The models contain the definition of the DM models.

• The mining build task describes the configuration of the
training task that will produce the model instance. This
mining build task can be seen as the description of the se-
quence of actions executed to obtain the model. From the
perspective of planning, it can be seen as a plan. This plan
would include the sequence of DM actions that should be
executed over the initial dataset to obtain the final model.

WEKA and the Knowledge Flow Files (KFML)

WEKA (Witten and Frank 2005) is a collection of machine
learning algorithms to perform DM tasks. It includes all
the software components needed in a DM process, from
data loading and filtering to advanced machine learning al-
gorithms for classification, regression, etc. It also includes
many interesting functionalities, like graphical visualization
of the results. WEKA offers two different usages. The first
one is using directly the WEKA API in Java. The second

1See www.dmg.org for further information.
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one consists of using the graphical tools offered. The tool
included in WEKA we use is the Knowledge Flow. WEKA
Knowledge Flow is a data-flow inspired interface to WEKA
components. It allows to build a knowledge flow for pro-
cessing and analyzing data. Such knowledge flow can in-
clude most of WEKA functionalities: load data, prepare data
for cross-validation evaluation, apply filters, apply learning
algorithms, show the results graphically or in a text window,
etc. Knowledge flows are stored in KFML files, that can be
given also as input to WEKA.

A KFML file is an XML file including two sections. The
first one defines all the components involved in the knowl-
edge flow, as data file loaders, filters, learning algorithms, or
evaluators. The second one enumerates the links among the
components, i.e. it defines how the data flows in the DM pro-
cess, or how to connect the output of a component with the
input of other components. WEKA Knowledge Flow allows
loading, graphically editing, executing and saving KFML
files. A knowledge flow can be seen as the sequence of steps
that must be performed to execute a DM process.

Attribute-Relation File Format (ARFF)

An ARFF (Attribute-Relation File Format) file is an ASCII
text file that describes a list of instances sharing a set of at-
tributes. ARFF files were developed for use with the WEKA
machine learning software.2 ARFF files have two distinct
sections. The first section is the Header information, which
is followed by the Data information. The Header of the
ARFF file contains the name of the relation (name of the
DM task), a list of attributes (potentially including the class),
and their types. The ARFF Data section of the file contains
the actual instances, described in terms of the values of the
attributes.

The Planning for Data Mining (PDM) Tool

Figure 1 shows the PDM architecture of the implemented
system. There are four main modules; each one can be
hosted in a different computer connected through a network:
Client, Control, Datamining and Planner. We have used
the Java RMI (Remote Method Invocation) technology that
enables communication between different servers running
JVM’s (Java Virtual Machine). The planner incorporated in
the architecture is SAYPHI (De la Rosa, Garcı́a-Olaya, and
Borrajo 2007) and the DM Tool is WEKA (Witten and Frank
2005). However, given that we are using standard languages
other planners and/or DM tools could have been used.

The Client module offers an interface that provides access
to all the application functionalities. It generates a PMML
file from a high level description of the DM task specified
by the user using the interface. Then, it sends the PMML
description to the Control module.

The Control module interconnects all modules and per-
forms the required translations. The translations needed are:
from PMML to PDDL, PMML2PDDL; and from a PDDL
plan to KFML, Plan2KFML. The input to the module is the
DM task together with the dataset. First, the PMML2PDDL

2See www.cs.waikato.ac.nz/ ml/weka/arff.html for further in-
formation.

Figure 1: Overview of the
PDM architecture.

translator generates the PDDL problem file from the PMML
file. Then, the planner is executed to solve the translated
problem. The returned set of plans is translated to several
KFML files. Finally, the DM Tool is executed to process and
run the translated KFML files. The result is a compressed
file containing a set of directories, one for each plan. Each
directory contains the model generated by the DM Tool, the
statistics related to the evaluation of the model, the plans
generated by the planner, and the corresponding DM work-
flow in KFML. This results are used to create an ARFF file.
Such ARFF file let the system learn the estimations given by
experts.

The Datamining module permits the execution of DM
tasks in the WEKA DM Tool through Knowledge Flow
plans. It can obtain the model output and the statistics gen-
erated as a result of the Knowledge Flow execution. This
module also contains an ARFF directory for managing the
storage of the datasets that are necessary for the WEKA ex-
ecutions. The input to the module is a KFML file and the
output is a compressed file. The output is the model gener-
ated by the plan and the statistics related to the evaluation of
the model.

The Planning module receives each problem and domain
in PDDL format. It returns a set of plans in XML format
ready for the conversion to a KFML format. Currently, plan-
ning tasks are solved by the SAYPHI planner (De la Rosa,
Garcı́a-Olaya, and Borrajo 2007), but the architecture could
use any other planner that supports fluents, conditional ef-
fects and metrics. We have used SAYPHI because it: i) sup-
ports an extensive subset of PDDL; and ii) incorporates sev-
eral search algorithms able to deal with quality metrics.

Building the models from DM Tasks in PDDL

The main challenge of our approach is how to model DM
tasks by means of Automated Planning (AP). As we said, an
AP task is defined by two files, the domain definition and
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the problem description, whereas the DM task is defined by
the PMML file.

The PMML file description

The header of the PMML file contains the following infor-
mation:

• The DM goal. It can be classification, regression or clus-
tering.

• The dataset location and size.

• The hard and soft constraints of the user. An exam-
ple of hard constraint is obtaining an error lower than
a given threshold, whereas minimizing the total execu-
tion time is an example of soft constraint or preference.
We handle preferences and hard constraints over: i) exec-
time, for minimizing/constraining the execution time,
ii) percentage-incorrect, for minimizing/constraining the
classification error; iii) mean-absolute-error, for mini-
mizing/constraining the mean absolute error in regression
tasks and clustering, and iv) unreadability, for maximiz-
ing the understandability of the learned model (we trans-
form maximizing the understandability of the learned
model for minimizing/constraining unreadability).

The data dictionary includes one field for each attribute
in the dataset. The transformation dictionary includes one
function for each possible filter the user wants to apply over
the input data. Finally, the model part contains the definition
of the DM models. The user can specify the same model but
with different parameters. In general, for most DM tasks, a
user would include in the PMML file the full set of WEKA
DM techniques and some common settings for their param-
eters.

The PDDL Domain description

The PDDL domain file contains the description of all the
possible DM tasks (transformations, training, test, visualiza-
tion, . . . ). Each DM task is represented as a domain action.
The PDDL problem files contain information for a specific
dataset (i.e. dataset schema, the suitable transformation for
the dataset, the planning goals, the user-defined metric, etc.).
Domain predicates define the state space containing static
information (i.e. possible transformations, available train-
ing or evaluation tasks, etc.) and dynamic information that
changes during the execution of all DM tasks (e.g. adding
the fact that the dataset has already been pre-processed or
evaluated). The functions allow us to define thresholds for
different kinds of DM features (e.g. error, execution time
threshold, or understandability of a model) and to store the
values updated during the execution (e.g. total estimated er-
ror, execution time, or understandability).

Compilation of a PMML into a PDDL Problem

The PMML2PDDL translator automatically converts parts of
a PMML file with the DM task information into a PDDL
problem file. The translator uses expert knowledge to de-
fine some important planning information like the execution
time of the DM tasks, the classification error for classifica-
tion models or the mean absolute error in regression tasks

and clustering and the understandability of the each model.
The problem file together with a domain file, that is fixed for
all the DM tasks, are the inputs to the planner. The problem
file contains the particular data for each DM episode, includ-
ing the dataset description, the transformations and models
available for that problem, and the possible preferences and
constraints of the user.

Planning for DM Tasks
SAYPHI solves the planning task depending on the metric
specified in the PMML file. SAYPHI includes a collection of
search algorithms and domain-independent heuristics. Here,
we use Best-first Search with the relaxed planning graph
heuristic of FF (Hoffmann and Nebel 2001). Given that the
heuristic is not admissible, it does not guarantee to find the
best solution. Also, it is an open problem to assign the exact
cost estimations (in terms of accuracy, time to learn, or un-
derstandability) to planning (DM) actions. So, once it finds
a solution, it continues exploring nodes in order to find mul-
tiple solutions. Probably, the best models according to the
planner are not necessarily the best models according to the
user due to the estimation of the action cost explained below.
Therefore, diversity is the only way to avoid this problem.

The Planner module outputs all the generated plans en-
coded in an XML file. Plan2KFML translates each plan
into a KFML file, so it can be executed by the WEKA
Knowledge Flow. The translator generates as output a new
KFML file with an equivalent plan plus some extra actions.
Each action in the PDDL domain corresponds to one or
many WEKA components. Therefore, the translator writes
for each action in the plan the corresponding set of XML
tags that represent the WEKA component. Finally, the trans-
lator adds some extra components in order to save the infor-
mation generated during the execution. That information is
composed of the learned models and statistical information
as the execution time, accuracy, . . .

Learning
As defined above, the PDM architecture uses expert knowl-
edge to define some important planning information, like the
time required to build an specific model, or the estimated
accuracy of the resulting model. Initially, these values are
defined by an expert. However, those estimations can be far
from correct values, since they are hard to define. Also, it
can become difficult to provide those values under all possi-
ble uses of the techniques and the different domains.

The goal of the learning component is to automatically
acquire all those estimations from the experience of previous
DM processes. The data flow of this component is described
in Figure 2.

The main steps of this flow are:

1. Gathering DM Results: the goal is to gather DM expe-
rience from previous DM processes. All the information
is stored in an ARFF file. For a given DM process, the
following information is stored:

• Information about the data set: number of instances of
the data set, number of attributes of the data set, number
of continuous attributes, etc.
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Figure 2: Learning flow in the PDM architecture.

• Information about the model to build: the type of model
(association, clustering, general regression, neural net-
work, tree, etc.), the algorithm used to learn the model
(RBFNetwork, J48, etc.), the type of function (classifi-
cation, regression, clustering), the learning parameters,
etc.

• Information about the results obtained: type of evalua-
tion (split, cross validation, training set), time to build
the model, accuracy, mean squared error, etc.

• The plan that represents the DM workflow, and that has
been executed to obtain the model

2. Model generation: the information obtained in the previ-
ous step is used to learn prediction models. The functions
to learn are time, accuracy and SME (in Figure 2, error
and time models. These models can be generated with the
WEKA tool, as shown in the figure.

3. Given a new data set, a model, a function, and a learning
algorithm, and using the models generated in the previous
step, we obtain a prediction of the learning time, accuracy
and SME that will be obtained if we perform a new DM
process. These estimations are included in the PDDL file,
so they are used when planning new DM processes. Fig-
ure 3 shows an example of how the fluents of the dynamic
part of the PDDL problem file are updated. In the fig-
ure, the exec-time of a tree model and the support vector
machine model are updated, among others.

There are two ways to update the PDDL problem file with
these estimations: off-line and on-line. Off-line updates re-
quire to obtain information of many DM processes, use the
execution information to build the models, and employ these
models to update the PDDL problem file, which will stay
fixed in the future. On-line updates assume that, while new
data-mining processes are executed, new learning examples
are obtained, so the models can be dynamically updated, and
the PMML problem file is continuously updated.

Figure 3: Learning example in the PDM architecture.
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Abstract

This demonstration presents three conformant planners:
CPA, DNF, and CNF, whose performances are comparable
to those of state-of-the-art conformant planners. All three are
best-first search and progression-based planners. CPA, a rep-
resentative of approximation-based planners, was the recip-
ient of the Best Non-Observable Non-Deterministic Planner
Award at IPC-2008. DNF and CNF are complete planners
which employ different representations for belief states and
perform better than CPA in several domains. DNF uses DNF-
formulae which are minimal with respect to set inclusion,
while CNF uses CNF-formulae which are minimal with re-
spect to subsumption. The key difference between these two
planners and CPA lies in that they implement an algorithm for
guaranteeing completeness of the planner only when needed,
while CPA does so before the search for a plan starts. The
heuristics employed by the three aforementioned planners are
combinations of two well-know heuristics used in conformant
planning: the size of the belief state and the number of satis-
fied subgoals. The demonstration also presents various tech-
niques that contribute to the performance and scalability of
these planners. Lessons learned during the development of
these planners are discussed.

Introduction

Conformant planners deal with planning problems with un-
certainty about the initial states. The following issues are
key to the development of a conformant planner:

• A formalization of actions in presence of incomplete in-
formation; and

• A belief state representation and a good heuristic function.

The first item is important for the correctness of the plan-
ner, as it provides the theoretical foundations for the planner
to progress in the presence of incomplete information. The
second item is critical to the performance and scalability of
the planner, since the complexity of the problem of comput-
ing the successor belief state is, in general, computationally
expensive.

In this demonstration, we introduce three conformant
planners, CPA, DNF, and CNF. These planners employ dif-
ferent approaches to searching for a solutions. CPA searches
for a solution in the space of sets of partial states instead

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the space of belief states (Son et al. 2005). CPA uses
DNF-formulae to represent a set of partial states and em-
ploys several techniques to reduce the size of the initial be-
lief state. CPA was the recipient of the Best Non-Observable
Non-Deterministic Planner Award at IPC-2008. The excep-
tional performance of CPA led us to study the impact of the
belief state representation on the performance of complete
conformant planners. This investigation resulted in the de-
velopment of two planners, DNF and CNF, which use DNF-
and CNF-formulae, respectively, in encoding belief states.

We begin with a short review of the background of con-
formant planning. We then discuss the basic concepts used
in the development of the planners. Afterwards, we describe
the organization of the systems.

Background: Conformant Planning

A planning problem is described by a tuple P =
〈F,O, I, G〉, where F is a set of propositions, O is a set of
actions, I describes the initial state of the world, and G de-
scribes the goal. A literal is either a proposition p ∈ F or its
negation ¬p. ℓ̄ denotes the complement of a literal ℓ—i.e.,
ℓ̄ = ¬ℓ, where ¬¬p = p for p ∈ F . For a set of literals L,
L = {ℓ̄ | ℓ ∈ L}. A conjunction of literals is often viewed
as the set of its literals.

A set of literals X is consistent if there exists no p ∈ F
such that {p,¬p} ⊆ X . A set of literals X is complete if for
each p ∈ F , {p,¬p} ∩ X 6= ∅. A state s is a consistent and
complete set of literals. A belief state is a set of states.

Each action a in O is associated with a precondition φ
(denoted by pre(a)) and a set of conditional effects of the
form ψ → ℓ (also denoted by a : ψ → ℓ), where φ and ψ
are sets of literals and ℓ is a literal.

A state s satisfies a literal ℓ, denoted by s |= ℓ, if ℓ ∈ s.
s satisfies a conjunction of literals X , denoted by s |= X , if
it satisfies every literal belonging to X . The satisfaction of
a formula in a state is defined in the usual way. Likewise,
a belief state S satisfies a literal ℓ, denoted by S |= ℓ, if
s |= ℓ for every s ∈ S. S satisfies a conjunction of literals
X , denoted by S |= X , if s |= X for every s ∈ S.

Given a state s, an action a is executable in s if s |=
pre(a). The effect of executing a in s is

e(a, s) = {ℓ | ∃(a : ψ → ℓ). s |= ψ}

The transition function, denoted by Φ, in the planning do-
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main of P is defined by

Φ(a, s) =

{
s \ e(a, s) ∪ e(a, s) s |= pre(a)
⊥ otherwise

(1)

where ⊥ denotes a fail state.
Φ is extended to define Φ̂, a transition function which

maps sequences of actions and belief states to belief states
for reasoning about the effects of plans. Let S be a be-
lief state. We say that an action a is executable in a be-
lief state S if it is executable in every state belonging to
S. Let αn = [a1, . . . , an] be a sequence of actions and
αi = [a1, . . . , ai]:

• If n = 0 then Φ̂([ ], S) = S;

• If n > 0 then

◦ if Φ̂(αn−1, S) = ⊥ or an is not executable in

Φ̂(αn−1, S), then Φ̂(αn, S) = ⊥;

◦ if Φ̂(αn−1, S) 6= ⊥ and an is executable in Φ̂(αn−1, S)

then Φ̂(αn, S) = {Φ(an, s′) | s′ ∈ Φ̂(αn−1, S)}.
The initial state of the world I is a belief state and is rep-
resented by a formula. In our investigation, we consider
I to be a conjunction of literals, oneof statements and or

statements—where a oneof statement (or statement) repre-
sents an exclusive-or (resp. logical or) of its components. By
SI we denote the set of all states satisfying I . Typically, the
goal description G can contain literals and or statements.

A sequence of actions α = [a1, . . . , an] is a solution of

P if Φ̂(α, SI) satisfies G. In this paper, we will denote with
Ca the set of conditional effects of an action a.

Approximation-Based Planning

The approach to approximation-based planning adopted in
CPA relies on the 0-approximation semantics for reasoning
about effects of actions in presence of incomplete informa-
tion about the initial state (Son and Baral 2001). Intuitively,
the approach (i) replaces a belief state by a partial state,
which is a set of fluent literals; and (ii) specifies how to com-
pute the successor partial state, i.e., the result of executing an
action in a given partial state. This is appealing for confor-
mant planning, since it lowers the complexity of conformant
planning (Baral, Kreinovich, and Trejo 2000). It is charac-
terized by a function (ΦA) that maps an action and a partial
state to a partial state. Given a partial state δ, the possible
effects of a in δ are given by

pca(δ) = {l | (ψ → l) ∈ Ca, ψ ∩ δ = ∅}. (2)

The successor partial state from the execution of a in δ is

defined by ΦA(a, δ) = (δ∪e(a, δ))\pca(δ) if a is executable
in δ; and ΦA(a, δ) = ⊥, otherwise. This function is then

extended to define Φ̂A, similarly to Φ̂, to reason about plans.
Observe that ΦA coincides with Φ under complete infor-

mation, i.e., ΦA(a, s) = Φ(a, s) for every state s. How-
ever, ΦA can be incomplete. For example, given a planning
problem P1 with the set of propositions {f, g, h}, the ini-
tial state I = ∅, the set of actions O = {a : f ∧ g → h, a :
f∧¬g → h, b : g → f, b : ¬g → f}, and the goal G = {h}.
ΦA(b, {∅}) = {∅}, i.e., ΦA will answer the query whether

f will be true after the execution of b in the initial state with
‘No’ whereas Φ will say ‘Yes.’

To guarantee completeness, CPA exploits the complete-
ness condition in (Son and Tu 2006) to identify a minimal
set of initial partial states and searches for solutions in the
space of sets of partial states, called cs-states.

DNF and CNF

The DNF planner uses DNF-formulae to represent belief
states and employs the transition function ΦDNF in its pro-
gression. ΦDNF relies on an algorithm for splitting a partial
state δ into a minimal set of partial states ∆ (with respect to
set inclusions among members) such that every precondition
of a given action a is either true or false in each member of
∆. The details of ΦDNF can be found in (To, Pontelli, and
Son 2009).

For example,given the planning problem P1 described in
the previous subsection, the behavior of ΦDNF is as fol-
lows. The initial belief state will be represented by the DNF-
formula ∆ = {∅}. ΦDNF (b,∆) will begin with the realiza-
tion that ∆ will need to be split into ∆1 = {{g}, {¬g}}.
The result of executing b in ∆ will then be ∆2 =
{{f, g}, {f,¬g}}. Executing a in ∆2 does not require any
splitting and results in ∆3 = {{f, g, h}, {f,¬g, h}}.

Observe that the initial belief state consists of eight states
(all possible states of the problem) and the DNF-formula af-
ter the splitting for b contains only two elements. This repre-
sentation allows for an efficient computation of the succes-
sor belief state—i.e., ΦDNF (a,∆) can be computed in poly-
nomial time in the size of ∆, under a reasonable assump-
tion that the number of effects of each action is bounded, for
every action a and DNF-formula ∆. It is worth to men-
tion that the belief state representation of DNF is similar
to that of CPA. In this sense, the key distinction between
DNF and CPA lies in that DNF computes the set of partial
states needed for guaranteeing the completeness of the plan-
ner only when needed, while CPA computes it before the
search process starts. Both planners, however, still suffer
from the possible huge size of the initial state.

To address the problem of the size of the initial state faced
by DNF and CPA, the CNF planner uses CNF-formulae, rep-
resented as a set of clauses and minimal with respect to sub-
sumption and unit propagation, to represent belief states.
The transition function ΦCNF of CNF is similar to ΦDNF ,
in that it also relies on an algorithm for splitting a formula
ϕ into a set of CNF-formulae, enb(a, ϕ), such that the ef-
fects of the action a on ϕ can be determined. For example,
ΦCNF behaves almost as ΦDNF with respect to the prob-
lem P1, as the initial state ∅ is splitted into two clauses {g}
and {¬g}, enabling the execution of b to achieve f from the
initial state. In this sense, the key difference between DNF

and CNF lies in their use of different belief state represen-
tations. While the computation of ΦCNF is more complex
than that of ΦDNF , its representation of the initial state is
more compact. This representation pays off when the size
of the initial state is huge. This representation also allows
for the application of a new technique, called relaxation of
oneof statements, which allows CNF to solve all instances
of the coin-domain. To the best of our knowledge, CNF
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is the only planner can deal with the instances coins-21
to coins-30, whose initial belief states contain more than
106 states. Precise definition of ΦCNF can be found in (To,
Son, and Pontelli 2010).

Analysis and Simplifications

The analysis and simplification techniques implemented in
the three planners help simplify the planning instances by re-
ducing the number of actions and propositions. It also con-
tains, for each representation, a technique that reduces the
size of the initial cs-state (or belief state). These techniques
briefly discussed next.
Basic Simplifications: We consider two well-known basic
steps: forward reachability and goal relevance. Several
planners implement these two steps.

Forward reachability is used to detect: (i) propositions
whose truth value cannot be affected by the actions in the
problem specification (w.r.t. the initial state); (ii) actions
whose execution cannot be triggered w.r.t. the given initial
state. This process can be modeled as a fixpoint computa-
tion. Goal relevance proceeds in a similar manner, by de-
tecting actions that are relevant to the achievement of the
goal.

Combination of oneof Statements: oneof statements are
used to specify the uncertainty about some propositions
and/or mutual exclusion between propositions. The number
of the oneof statements and their size (the size of an oneof

statements is the number of its elements) determine the size
of the initial cs-state.

The idea of the combination of oneof statements tech-
nique is based on the non-interaction between actions and
propositions in different sub-problems of a conformant plan-
ning problem. This idea is best illustrated with a simple ex-
ample.

Let us consider the planning problem P2 with the
set of propositions {f, g, h, p, i, j}, the initial state I =
{oneof(f, g), oneof(h, p),¬i,¬j}, the set of actions O =
{ a : f → i c : h → j b : g → i d : p → j }, and the
goal G = i ∧ j. Here, a causes i to be true if f is true; c
causes j to be true if h is true; b causes i to be true if g is
true; and d causes j to be true if p is true.

It is easy to see that the sequence α = [a, b, c, d] is a
solution of P2. Furthermore, the search should start from
the cs-state consisting of the four states:

{f,¬g, h,¬p,¬i,¬j} {¬f, g, h,¬p,¬i,¬j}
{f,¬g,¬h, p,¬i,¬j} {¬f, g,¬h, p,¬i,¬j}

Let P ′

2 be the problem obtained from P2 by replacing I with
I ′, where I ′ = {oneof(f ∧ h, g ∧ p),¬i,¬j}.

We can see that α is also a solution of P ′

2. Further-
more, each solution of P ′

2 is a solution of P2. This
transformation is interesting since the initial cs-state now
consists only of two states: {f,¬g, h,¬p,¬i,¬j} and
{¬f, g,¬h, p,¬i,¬j}. In other words, the number of states
in the initial belief state (or initial cs-state) that a confor-
mant planner has to consider in P ′

2 is 2, while it is 4 in P2.
This transformation is possible because the set of actions
that are “activated” by f and g is disjoint from the set of ac-
tions that are “activated” by h and p, i.e., preact({f, g}) ∩

preact({h, p}) = ∅ where preact(δ) we denote the set of
actions depending on δ.

Using this technique, many oneof statements can be
combined into one, yielding several order of magnitudes re-
duction in the size of the initial cs-state.

Goal Splitting: The key idea is that if a problem P contains a
subgoal whose truth value cannot be negated by the actions
used to reach the other goals, then the problem can be de-
composed into smaller problems with different goals, whose
solutions can be combined to create a solution of the origi-
nal problem. This technique can be seen as a variation of the
goal ordering technique in (Hoffmann, Porteous, and Sebas-
tia 2004) and relies on the notion of dependence proposed in
(Son and Tu 2006).

Relaxation of oneof Statements: In contrast to the combi-
nation of oneof statements technique, a relaxation of an
oneof statement increases the number of the states in the
initial belief state. More precisely, the relaxation of a oneof
statement oneof(l1, . . . , lk) replaces it with an or statement
or(l1, . . . , lk). Conditions for the soundness of the trans-
formation have been identified. This technique also relies
on the non-interaction between actions and propositions in
these oneof statements. Let us illustrate this with a simple
example.

Let consider the planning problem P3 with the
set of propositions {f, g, i, j}, the initial state
I = {oneof(f, g),¬i,¬j}, the set of actions
O = { a : f ∧ ¬i → i, b : g ∧ ¬j → j }, and the goal
G = i ∧ j. Any solution of the problem P ′

3 with the same
set of propositions, the initial state I ′ = {or(f, g),¬i,¬j},
O, and G will be a solution of P3.

Observe that this technique increases the number of states
in the initial belief state. However, the size of the CNF for-
mula representing the relaxation will be smaller compared to
the size of the CNF formula representing the original belief
state.

Heuristics in CPA

The heuristics used in CPA are the combination of the fol-
lowing well-known heuristics.

• The cardinality heuristic: we prefer cs-states that have
a smaller cardinality. In other words, hcard(Σ) = |Σ|
where Σ is a cs-state. Note that we use this heuristic in
a forward fashion, and hence, is different from its use in
(Bertoli, Cimatti, and Roveri 2001; Bryce and Kambham-
pati 2004). The intuition behinds this is that planning with
complete information is “easier” than planning with in-
complete information, and a lower cardinality implies a
lower degree of uncertainty.

• The number of satisfied subgoals: denoted by hgoal(Σ).

CPA uses the combination: hcs(Σ) =
(hcard(Σ), hgoal(Σ)) with lexicographic ordering. It
gives preference to the cs-states with a lower degree of
uncertainty, i.e., cs-states that have a smaller cardinality.
If the cardinality of two cs-states does not differ, then the
heuristics gives preference to those cs-states that maximize
the number of satisfied subgoal.
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Heuristics in DNF and CNF

Given a DNF-state ∆, the heuristic function used in DNF is
a combination of the following three values (along with a
lexicographic ordering):

• hgoal(∆): the number of subgoals satisfied by ∆.

• hcard(∆): the cardinality of ∆.

• hdis(∆): the square distance of ∆ to the goal, defined by

hdis(∆) = Σδ∈∆(|G| − hgoal(δ))
2

where G is the goal of the problem.

For a CNF-state ϕ, encoded by a set of clauses, the heuris-
tic function of CNF is a combination of the number of sat-
isfied subgoals in ϕ (hgoal(ϕ)) and the size of ϕ, defined as
the sum of the sizes of non-unit clauses in ϕ (hsize(ϕ)).

System Organization

The proposed systems are organized as in Fig. 1. The first
component is a front-end, that acts as a static analyzer. The
static analyzer is in charge of applying several simplifica-
tions and optimizations to the input problem specification—
initially expressed in PDDL. The simplified specification
(expressed either in PDDL or in the action language AL—
the native input format of CPA, DNF, and CNF) produced
by the static analyzer is then fed to the actual planner. The
separation of the two stages allows us to investigate the use
of different planners applied to the same simplified problem
specification.

.....

CpA

.....

DNF

CNF

Syntactic Analyzer Planners

Input

AL 
representation

PDDL

Simplified 
problem

forward reachability

goal relevance

goal splitting

oneof combination

oneof relaxation

Figure 1: Overall System

The implementation of the static analyzer makes use of
the PDDL parser originally developed for these systems; the
parser has been modified to enable the construction of a Pro-
log representation of the problem specification. This Pro-
log representation is used as the input to the static analyzer,
implemented in Prolog. The analyzer implements the basic
simplifications, the oneof-combination/relaxation, and the
goal-splitting algorithm. Its output is a sequence of simpli-
fied problems in AL, which serve as input to these planners.
An option is also available to produce PDDL output from the
static analyzer—that can be fed, for example, to a different
planner.

CPA makes use of hcs in combination with a best-first
search algorithm. CPA employs an explicit representation
of cs-states as sets of sets of propositions, and they make
use of the C++ standard library std for sets manipulation.
To reduce the space consumption, a partial state is created
only once and it is shared by all cs-states containing it.

Discussion and Conclusion

We presented the main techniques implemented in the three
conformant planners CPA, DNF, and CNF. Experimentally,
these planners are competitive with state-of-the-art confor-
mant planners in several benchmark domains. CNF scales
better than others in some benchmarks but the overhead in
computing the successor belief state slows it down in small
instances.

The development of these planners highlights the fact that
the representation of belief states can significantly impact
the performance of a planner. Some simplification tech-
niques are applicable to a wide range of representations,
while others are specific to certain representations. For ex-
ample, oneof-combination is better for DNF-representation
and the oneof-relaxation is better for CNF-representation.

So far, the proposed planners do focus only on the size of
the initial belief state. For scalability, the problems related to
the number of actions in the planning problems will need to
be addressed as well. We believe that heuristics should pro-
vide a solution to this problem and this will be a focus of our
future work. Furthermore, our study reveals that there seems
to be no “one size fits all” representation for all planning do-
mains. As such, identifying the most useful representation
given a planning problem will be another interesting work
that we plan to explore in the near future.
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