
Shopper: Plan Interpreter Demonstration
Storyboard for ICAPS 2010 System Demonstration

John Maraist Robert P. Goldman

SIFT, LLC

International Conference on Automated Planning and
Scheduling, 2010

John Maraist, Robert P. Goldman SHOPPER Demo



Introduction

We will begin with an overview of the system.

Shopper interprets LTML
plans. LTML is an extension
of PDDL with:

Actions that have
outputs.
Complex control
structures (if desired).

Shopper enables
researchers to move beyond
validation of plans to testing
of plans.

Shopper includes an
easy-to-program simulator.

Coded

services

(for testing)

SOAP

Wrapper

Web

services

Web

service

simulator

Parser Parser

Belief

state

(SHOP2)interpreter

Core

John Maraist, Robert P. Goldman SHOPPER Demo



Web Services Composition/Planning

We will next illustrate basic system operation.

Examples of LTML plans.
Zoom in on an operator — PDDL-like (LTML notation).
Web service markup.
LTML control structures

Linear classical plans.
Looping and branching plans.

Demo of plan execution.
Web services accessed using SOAP.

John Maraist, Robert P. Goldman SHOPPER Demo



Modeling Web Services in Simulation

We will then demonstrate the system’s support for simulation.
Motivation:

Working with real web services is not ideal for
experimentation, debugging, etc.
Most web services backed by databases: cumbersome to
refresh, reinitialize when debugging plans.
Shopper incorporates a simulator for the web services
which incorporates a Prolog-style state model.

Belief state corresponds to the state of the world.
Hidden from the executing agent, whose belief state
includes only what it is able to query and infer.

Demonstration:
Illustrate excerpt of source behind service simulation.
Plan execution against a simulated web service

Side-by-side comparison of agent’s belief state vs. web
services’ actual state.

John Maraist, Robert P. Goldman SHOPPER Demo



Shopper UI/Debugger

We will demonstrate plan executions on a debugger UI.

The Shopper debugger
includes typical visualization
features which will support an
easy-to-follow presentation.

Stepping through source
code.
Breakpoints to quickly
reach statements of
particular interest.
Examination of key
variables.

John Maraist, Robert P. Goldman SHOPPER Demo



Summary: Why should you care?

We will conclude with a short summary
of the system’s contributions.

We have built an interpreter for an extension of PDDL.
Incorporates a simple, very flexible simulator.
Provides an easy framework for planning-related
experimentation.

General, web service-friendly framework.
Extend plan evaluation from validation (e.g. VAL) to testing.

Useful GUI debugging environment.

John Maraist, Robert P. Goldman SHOPPER Demo


