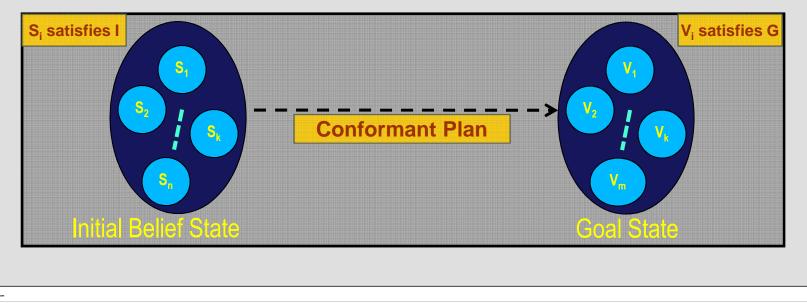


Conformant Planners: Approximations vs. Representation


Son Thanh To, Vien Dang Tran, Khoi Hoang Nguyen, Tran Cao Son, Enrico Pontelli

Computer Science Department New Mexico State University, Las Cruces, NM 88003

Conformant Planning Problem

- **Given**: planning problem $P = \langle F, O, I, G \rangle$ where
 - \Box *F* is a set of propositions
 - □ O is a set of operators
 - □ / is the initial state often incomplete
 - \Box *G* is the goal
- □ Problem: Computing a plan that achieves *G* from all possible initial states of the world satisfying *I*

Goal, Motivated Questions, and Facts

- □ Goal: develop state-of-the-art conformant planners
- Motivated questions:
 - How does the definition of a progression function influence the performance of a conformant planner?
 - □How does the representation of belief states influence the performance of a conformant planner?
- Motivated facts:
 - □CpA^{PH}, an *approximation-based conformant planner*, uses an incomplete progression function & a compact belief state representation performs very well in its first implementation
 □CpA^{PH} differs from all of its counterparts when it was introduced
 - □CpA^{PH} needs complete initial belief state in benchmark problems with disjunctive information about the initial state

Considerations in Conformant Planners

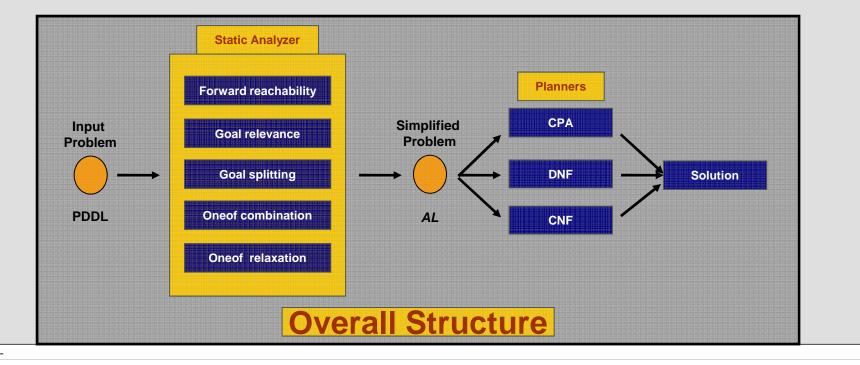
□ How to encode a belief state? Many possibilities each might have its own desirable properties (e.g. minimal) \Box How to progress? By a function Φ Given an action *a* and a belief state *S* in the corresponding representation, compute the belief state Uresulting from executing a in S, written as $U = \Phi(a, S)$ Certain operations on a representation might lead to a formula which no longer satisfies the desirable properties and require some overhead after the computation (e.g., updating minimal CNF might not result in a minimal CNF)

Main Characteristics of CpA

- Approximation-based progression function
- Encoding of belief state enable easy computation of successor belief state
- ❑ Search for plan in the space of 3ⁿ partial states instead of the space of 2^{2ⁿ} belief states as most other conformant planners (for problems with conjunction of literals as initial state)
- Maintain completeness through special reasoning technique
 CpA incurs significant overhead in the computation of the representation of the initial belief state
 - □ CpA uses DNF-formulae to encode belief states and can potentially require a lot of memory
- □ CpA uses a combination of the cardinality and the number of satisfied subgoals heuristic as its heuristic function

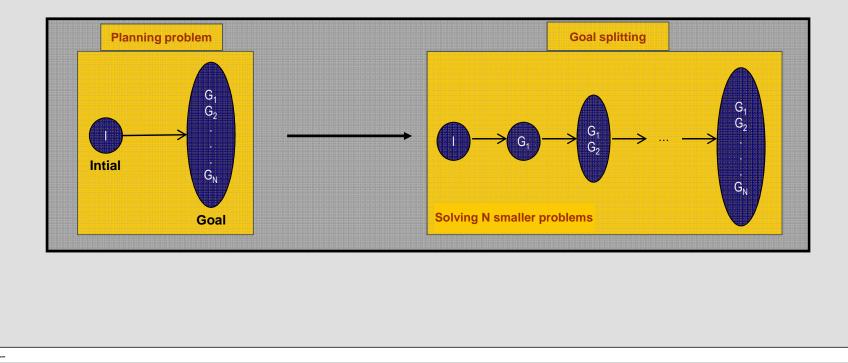
Main Characteristics of DNF

- A middle-ground between approximation and complete reasoning
- □ Search for plan in the space of 2^{2ⁿ} belief states
- Use minimal DNF-formulae to represent belief states, also enable easy computation of successor belief state
- Progression function defined over minimal DNF-formulae
 DNF incurs overhead for the transformation of successor belief state into minimal DNF-formulae
- DNF uses a combination of the cardinality, the number of satisfied subgoals, and the square distance to the goal heuristic as its heuristic function


Main Characteristics of CNF

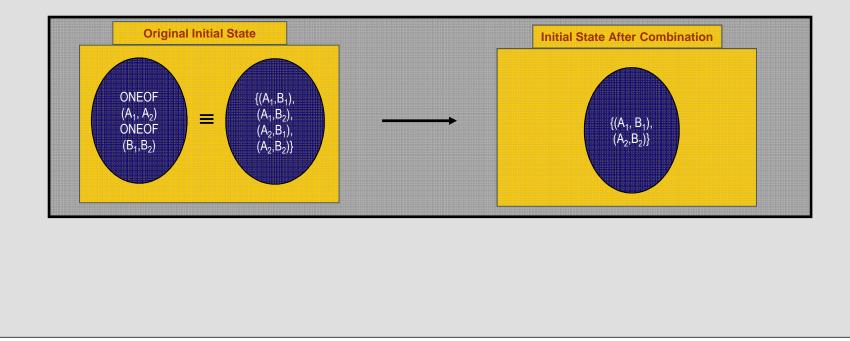
Search for plan in the space of 2^{2ⁿ} belief states
 Use minimal CNF-formulae to represent belief states, a departure of easy computation of successor belief state
 Progression function defined over minimal CNF-formulae
 CNF also incurs overhead for the transformation of successor belief state into minimal CNF-formulae
 CNF uses the number of satisfied subgoals as its heuristic function

Simplification Techniques for Scalability and Performance


- □ Forward reachability: eliminating redundant actions and propositions
- Goal relevance: identifying necessary information in the initial belief state to guarantee completeness
- Goal splitting: divide-and-conquer using subgoals
- □ Oneof-combination: reducing the size of the initial belief state
- Oneof-relaxation: replacing mutual exclusive or by disjunctive or

□ If a problem *P* contains a subgoal whose truth value cannot be negated by the actions used to reach the other goals, then the problem can be decomposed into a sequence of smaller problems

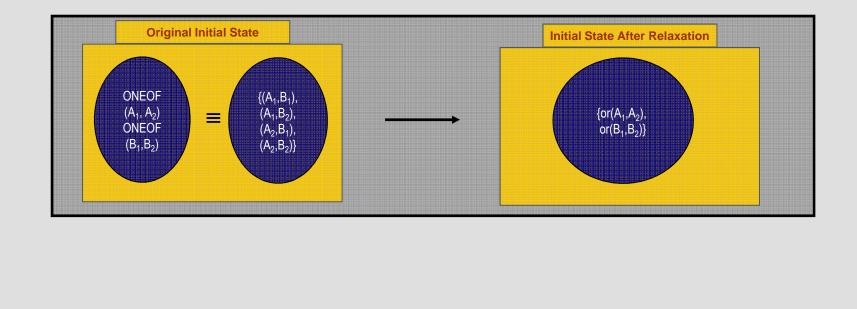
□ Improve scalability



Simplification Techniques: oneof-combination

□ If actions and propositions in different **oneof**'s have no interaction then we do not need to consider all possible permutations of the **oneof**'s.

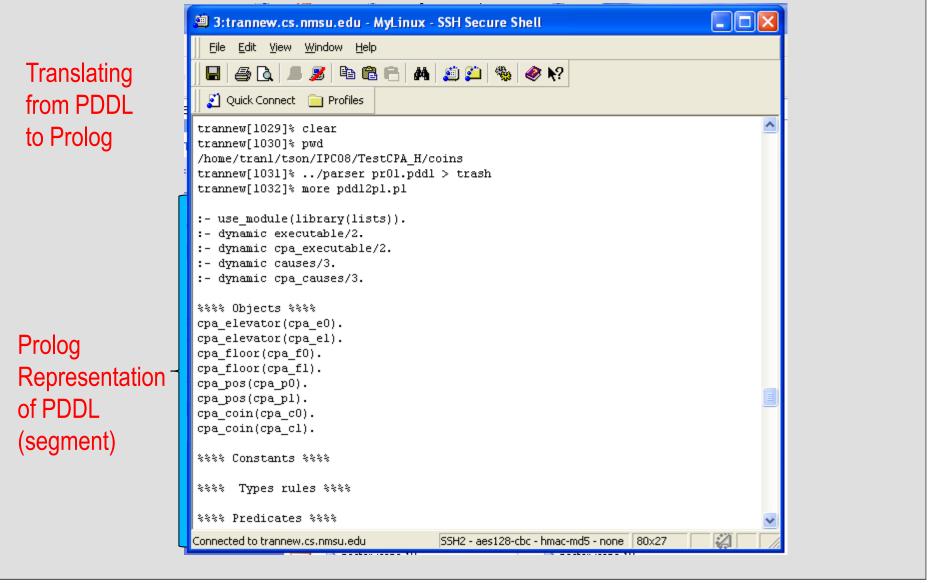
- Reducing the size of the initial belief state
- □ Improve scalability
- □ Suitable for DNF and CpA



Simplification Techniques: oneof-relaxation

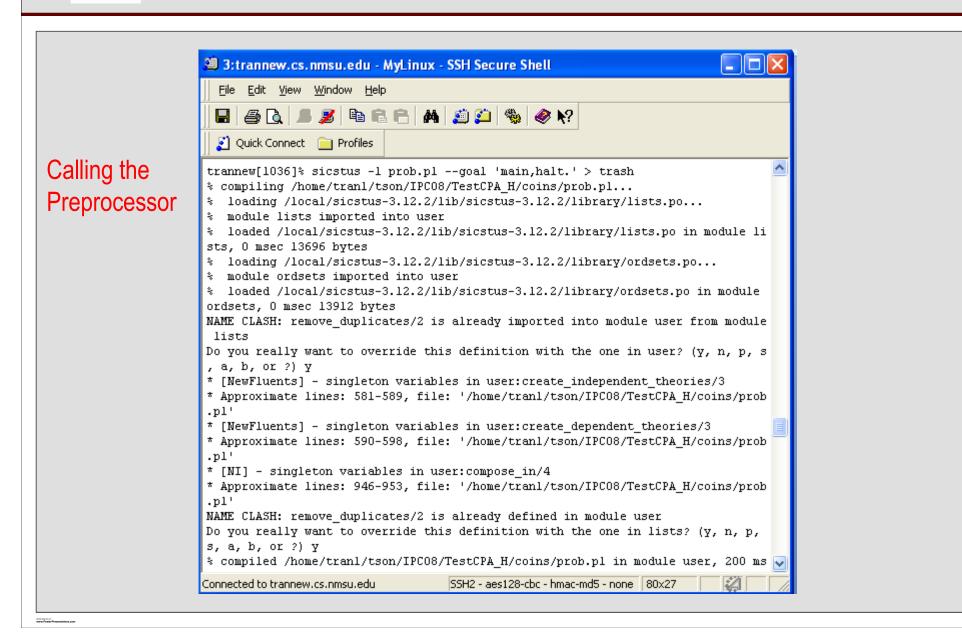
□ If actions and propositions in an **oneof**—clause satisfy certain properties then an **oneof**—clause can be replaced by an **or**—clause

- □ Increasing the size of the initial belief state
- □ Improve scalability
- Suitable for CNF



Conclusions

Presentation of three conformant planners: CpA, DNF, and CNF There exists no "one size fits all" representation for all domains □ The choice of belief state representation impacts performance of conformant planner Choice of simplification techniques □ algorithm for computing successor belief state



A Sample Run – CpA - Preprocessor

Preprocessor

Output of Preprocessor

	1 Patronom and a studio and Chall		
	🕮 3:trannew.cs.nmsu.edu - MyLinux - SSH Secure Shell 📃 🗖 🔀		
	Eile Edit View Window Help		
	📕 🖨 🖻 🔎 👘 🖻 🖻 🔺 💋 🎾 🦠 🥔 🗞		
	🖉 Quick Connect 🧰 Profiles		
Output of the			
Droprocesor	$\underbrace{\begin{array}{c} \text{trannew[1037]* more theory_names} \\ \text{theory_0.al theory_1.al} & \\ \end{array}}_{\text{theory_0.al theory_1.al}} & \\ \end{array}} Goal Splitting$		
Preprocessor	trannew[1038]* more theory 1		
	theory 10.al* theory 1.al*		
	trannew[1038]% more theory_0.al		
	fluent cpa_at(cpa_fl,cpa_pl);		
	fluent cpa_inside(cpa_el);		
	<pre>fluent cpa_at(cpa_fl,cpa_p0); fluent cpa_have(cpa_c0);</pre>		
	fluent cpa have(cpa_cl);		
	fluent cpa_at(cpa_f0,cpa_p1);		
	fluent cpa_inside(cpa_e0);		
	fluent cpa_at(cpa_f0,cpa_p0);		
First theory	<pre>fluent cpa_in(cpa_e0,cpa_f0); fluent cpa_in(cpa_e0,cpa_f1);</pre>		
First theory	fluent cpa_in(cpa_e1,cpa_f0);		
in AL	fluent cpa_in(cpa_el,cpa_fl);		
	fluent cpa_coin_at(cpa_c0,cpa_f1,cpa_p0);		
	<pre>fluent cpa_coin_at(cpa_c0,cpa_f1,cpa_p1); fluent cpa_coin_at(cpa_c1,cpa_f1,cpa_p0);</pre>		
	fluent cpa_coin_at(cpa_cl,cpa_fl,cpa_pl);		
	۶% actions		
	action cpa_collect(cpa_c0,cpa_f0,cpa_p0);		
	action cpa_collect(cpa_c0,cpa_f0,cpa_p1);		
	action cpa_collect(cpa_c0,cpa_f1,cpa_p0);		
	Connected to trannew.cs.nmsu.edu S5H2 - aes128-cbc - hmac-md5 - none 80x27 🦷 🏹 👘		

Calling the planner

<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp		
<u>11</u>		
	5 MA 💭 💭 🧐 🥙 🦎	
🛛 👔 Quick Connect 📄 Profiles		
		^
*% goal state		
goal cpa_have(cpa_c0); trannew[1039]%/cpa		
	cpa+bfs+rgp* cpa.pddl2pl*	
cpa+* cpa+bfs+gc* (cpa+dfs*	
trannew[1039]%/cpa+bfs+gc	theory_names	
	,cpa_f0)	
	<pre>c_ap(cpd_co,cpd_co,cpd_r) cpd_cccp_cdc(cpd_ ,cpa_fl,cpa_p0) cpa_move_right(cpa_fl,cpa_p0</pre>	
	pa_pl) cpa_collect(cpa_cl,cpa_fl,cpa_pl) cpa	_move_le
ft(cpa_f1,cpa_p1,cpa_p0) cpa_	_collect(cpa_cl,cpa_fl,cpa_p0)	
linear 12 0 1 2 3 4 5 0 6 7 8	8 9 10	
STATISTICS		
Total time: 0.011 (sec)		
Reading: 0.002 (sec) [17.3]	7 %1	
Preprocessing: 0.001 (sec)	[9.63 %]	
Statistic Search: 0.008 (sec) [73.01	*]	
Total states allocated: 0 Total cstate(s): 0		
Total cstate(s) remaining in	the queue: O	
trannew[1040]%	-	~
Connected to trannew.cs.nmsu.edu	SSH2 - aes128-cbc - hmac-md5 - none 80x27	