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Abstract 

This paper presents realistic planning domains where 
changes cannot be represented by only instant updates of 
world states but representation of continuous change is also 
required. Since existing temporal planners cannot model 
such planning domains, they fail to find optimal plans for 
these domains. We propose a continuous model to represent 
continuous change in complex planning domains. Then, we 
present TLplan-C as an extension to an existing forward 
chaining temporal planner: TLplan. TLplan-C uses the new 
continuous model and applies a backward branching me-
chanism to schedule actions on the continuous timeline. 
These properties of the planner ensure optimality of the 
constructed plan, hence, completeness on the continuous 
model. Multi-depot multi-vehicle storage domain as a sam-
ple planning domain is presented to analyze the perfor-
mance of TLplan-C. 

Introduction 

Recently, considerable progress has been made to ensure 
efficiency of planners in solving more complex problems. 
Domain definition languages are extended in order to wi-
den the scope of the planning problems. Optimization 
metrics are defined for the planning problems to evaluate 
the quality of the constructed plans. Due to the real-world 
constraints, these metrics are designed to consider both 
action costs and plan duration. Total duration of the plan is 
also an important metric. This fact necessitates integration 
of planning and scheduling. 
 (Smith et al.2000) classifies planners in relation to the 
applied scheduling methodology in three groups: stratified, 
interleaved and homogenous planning and scheduling. In 
planners which applies stratified planning and scheduling, 
action choices are made first, and then, the resulting plan is 
scheduled in a separate phase. Crickey3 (Coles et al. 2008) 
uses this strategy through specifying the action choices by 
a classical planner, and then scheduling the selected ac-
tions. Although the planner is guided by the scheduler for 
selecting schedulable actions in the constructed plan, the 
final plan is not guaranteed to be optimal. This is due to the 
fact that makespan optimal plans depend on the selection 
of actions considering the schedule of these actions. In-
stead of separately executing planning and scheduling 
phases, these phases may be interleaved, in which essential 

constraints such as action ordering decisions are made 
while actions to be executed are chosen. Partial order plan-
ners like HSTS (Muscetolla 1993) lxtet (Ghallab & Laru-
elle1994) use this strategy. In these planners, a plan is 
constructed by incremental selection of actions together 
with a set of ordering constraints. Although the planning 
phase is not totally independent from the scheduling phase, 
these planners do not maintain absolute state information 
in search nodes during the search. This prevents solving 
complex problems where action choices need perfect 
knowledge of the state information. In homogenous plan-
ning and scheduling approach, the whole problem is for-
mulated as a composite planning and scheduling problem, 
and the entire problem is solved in a uniform way in which 
the timing of actions is directly considered during plan-
ning. Forward chaining temporal planners use this strategy 
and use the advantage of providing complete state informa-
tion. TLPlan (Bacchus &Ady 2001) which is an extension 
of the system introduced by (Bacchus & Kabanza1998) is 
capable of modeling and solving planning problems with 
metric quantities and actions with varying durations. Sapa 
(Do & Kambhampati 2003), another forward chaining 
planner, uses a similar search procedure to TLPLAN and 
defines domain independent heuristics to control its search 
instead of domain specific heuristics and temporal control 
formulas. In both of these planners, the scheduled time of 
an action is determined when the action is inserted into 
plan. Each search node maintains its corresponding world 
state in which the timing information is also included. The 
transition to a new world state is provided by applying an 
action, or advancement of the time value of the world. 
Forward chaining temporal planners can construct optimal 
plans while minimizing action costs or total duration (ma-
kespan)  of the plan. 
 While integrated planning and scheduling techniques 
provide improvements on the solution quality, they have 
poor performance on the realistic problems where changes 
cannot be represented by only instant updates of the world 
states. Effects of an action in the real world may involve 
continuous change which should be considered by the 
planner in order to construct a valid plan. For instance, in 
an environment with mobile agents, while choosing a 
move action, the planner should be aware of time depen-
dent continuous change in the positions of the other mov-



ing agents, in order to come up with a valid plan without 
collisions. 
 Some of the earlier studies have investigated planning in 
domains with continuous linear change. TM-LPSAT (Shin 
& Davis 2005) as an extension to SAT-based planning 
framework handles concurrent actions with continuous 
change. COLIN (Coles et al. 2009) is another effective 
planner which plans with mixed discrete-continuous nu-
meric changes. However, continuous change in both sys-
tems represents increase or decrease of singular values, 
which is appropriate for modeling consumable resources 
but not adequate to handle multiple interacting changes 
such as movements of several agents in a shared path. 
 In this paper, we introduce planning domains including 
actions with continuous change effects, and we propose an 
optimal temporal planner TLPlan-C assisted by a conti-
nuous model which is able to represent continuous change. 
Our approach extends forward chaining temporal planning 
algorithm to provide completeness and optimality in do-
mains with continuous change. We propose our planner as 
an extension to TLPlan system and investigate results for 
an example domain. 
 In the following sections, we describe the example do-
main and review the TLPlan approach. We proceed by 
describing the continuous model and TLPlan-C algorithm. 
Finally, we discuss optimality of TLPlan-C and present its 
solution in the example problem and evaluate its plan qual-
ity compared to that of TLPlan. 

Planning Domains with Continuous Change 

In this paper, we focus on solving complex planning prob-
lems where the domain includes continuous change that is 
required to be handled. Some definitions are given here to 
formulate the overall problem. 

Definition 1: (discrete-change) A discrete change is an 
effect of an action that appears at-start or at-end of the 
action and reveals an instant change of the state such as 
addition/deletion of predicates.  

Definition 2: (continuous-time variable) A continuous-
time variable y is a variable whose value is updated in 
continuous time. 

Definition 3: (continuous-change) A continuous change 

refers to a linear change in the value of a specific conti-

nuous-time variable. It can be expressed by a bounded 

linear function of time. 

Definition 4: (action) An action correspond to a transition 

of world states and is represented by a condition, several 

effects and a positive duration. 

Definition 5: (discrete-effect action) A discrete-effect 

action is an action which has only discrete-change effects. 

Definition 6: (continuous-effect action) A continuous-

effect action is an action which has one or more conti-

nuous-change effects. 

Definition 7: (validation rule) Validation rule defines a 
geometrical conflict detection rule about continuous-time 
variables that must hold all over the plan. Implementation 
of the validation rule depends on the domain definition. 

 To illustrate an example of a planning domain with 
continuous-change effects, we present the path sharing 
problem. Figure 1 shows the multi package - multi depot 
storage domain which consists of several depots connected 
with a shared narrow corridor which is a one-lane shared 
path. There are multiple packages to be moved to their 
destinations in this multi-agent environment. Each agent is 
capable of picking up/dropping off a single package and 
moving from one depot to another using the shared path 
either with or without a package. We assume that agents 
move on the path with a constant speed that is predefined 
for each agent in the domain definition. Positions (one 
dimensional) of the open doors of the depots on the path 
are also defined in the domain definition. 
 This example domain includes both discrete and conti-
nuous-effect actions. The shared path (corridor) is the criti-
cal resource that should be shared in time among agents in 
order to find better quality plans. An agent can enter the 
one-lane shared path and move on the path unless it col-
lides with any other agent concurrently moving on the 
shared path. Validation rule for that scenario is the avoid-
ance of collisions among agents. This rule only applies to 
continuous-effect actions.  
 The expected solution for this problem is a sequence of 
precisely scheduled actions that leads the initial state of the 
world to the goal state, and the optimization metric is the 
minimization of makespan duration of the constructed 
plan. Existing temporal planners do not take into consider-
ation of continuous-effect actions, and cannot construct 
optimal plans in such domains. 

TLPlan 

Forward chaining is an efficient reasoning approach which 
performs progressive search in the search space. This rea-
soning mechanism is also used as an efficient search strat-
egy for temporal planning. Although forward chaining 
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Figue 1: Storage domain 



approach does not provide a “goal directed” search as in 
backward chaining, it presents some key advantages. For 
example, even if a backward-chaining planner starts with a 
completely described initial world and actions that 
preserve the completeness of this description, it will still 
have only incomplete knowledge of the world state at the 
various points of its search space. Partial order planners 
also suffer from this problem. The points of their search 
space are incomplete partially ordered plans, and at the 
various stages of an incomplete plan there is only a limited 
knowledge of the state of the world (Bacchus& Kabanza 
2000). On the other hand, forward chaining temporal 
planners have complete information about world states 
during search, and that information can provide powerful 
guidance for the search (Bacchus &Ady 2001). This fea-
ture of forward chaining is required in problems including 
actions that highly depend on the state information to 
match action preconditions and to estimate duration or cost 
of the actions. For instance, in the storage domain, in order 
to fire the collision-avoidance rule during the expansion of 
a new move action in a state, the precise start times of the 
previously scheduled move actions must be known in ad-
vance. Additionally, as a result of complete state informa-
tion, such planners can support richer planning 
representations that can model more complex resources 
(Bacchus & Teh 1998). 
 To get advantages of forward chaining, our approach is 
based on TLPLAN, a forward chaining temporal planner 
originally proposed by (Bacchus &Ady 2001). A search 
node in TLPlan includes the world state and the action 
applied along with the world clock that defines the start 
time of that action. In other words applying an action at a 
state means that this action is scheduled for the world clock 
of that state. The search proceeds by applying new actions 
or advancing the world clock towards finding a complete 
temporal plan. Note that, the application of an action does 
not advance the world clock but only instant effects of the 

action are applied. The at-end effects of that action are set 
to be applied when the world clock is advanced to the end-
ing time of that action. The advance of the world clock is 
provided by a special action which is applicable at any 
state, and the only effect of that action is setting the world 
clock to the next time point. To avoid infinite branching 
factor, forward chaining planners restrict available time 
points to a small set of special time points called decision 
epochs (Cushing et al. 2007) where a previously scheduled 
action terminates. This idea underlies the fact that a world 
state does not change at any time point except these deci-
sion epochs. The suitable time points to schedule a new 
action are selected only from the set of these decision 
epochs since no change occurs between these points. It has 
been shown that (Little & Aberdeen 2005) this method is 
complete and optimal under the assumption that TGP-style 
actions are used in which two actions do not overlap in any 
way if an effect or precondition of one is the negation of an 
effect or precondition of the other. However, as the set of 
decision epochs does not cover continuous timeline but 
only discrete time points, the planners employing this 
strategy (e.g, TLPlan), are incomplete if the problem in-
volves continuous effect actions. A sample problem in-
stance with two agents is illustrated in figure 2. While the 
vertical axis shows the positions of the agents on the 
shared path, the horizontal axis shows the time line. The 
positions of 7 depot entrances are marked on the vertical 
axis. The graph illustrates the makespan-optimal plan for 
executing two move actions by the two agents. The critical 
factor in getting the optimal plan is scheduling the second 
move action for time point t1 (instead of t2), which is not 
included in the standard set of the decision epochs. Exist-
ing temporal planners cannot construct an optimal plan in 
such cases. This is due to their lack of continuous effect 
action representations and incapability of scheduling ac-
tions for time points outside the decision epoch set.  

TLPlan-C 

As decision epoch temporal planners are not optimal for 
planning domains including continuous effect actions, we 
propose TLPlan-C, an extended temporal planner to 
address continuous changes. Figure 3 shows the planer 
architecture. There are two interrelated key features we 
concentrate on. Firstly, we introduce a continuous model 
which can represent continuous effect actions by conti-
nuous-time variables and some validation functions to 
handle interaction between these variables. Secondly, we 
propose an extended forward chaining temporal planning 
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algorithm which utilizes this model in order to construct 
complete and makespan optimal plans. 

Continuous Model 

  As defined earlier, continuous change does not represent 
an instantaneous change but a continuous change in the 
value of a specific continuous-time variable during the 
application of a continuous effect action. For instance, the 
move action in the storage domain introduced earlier is a 
continuous effect action because its effect can be 
represented by a continuous-time variable which denotes 
one dimensional position of the related agent on the path 
during its movement.  
  A domain may include several continuous-time va-
riables and each continuous effect action affects at least 
one of these variables. Since continuous change represents 
linear change in the value of a continuous-time variable, it 
can be demonstrated by a linear equation. Let D be a plan-
ning domain including n continuous-time variables. Let a 
be a continuous effect action of D that is scheduled to start 
at t0

i
 and yi be a continuous-time variable (i ∈ {1,2, … ,n}) 

affected by a, mi be the rate of change, and ci be the initial 
value of the variable. Further let ∆i be the duration of a 
where t represents time elapsed since the start of the plan. 
Accordingly the change in the value of yi can be formu-
lated as above. 

𝑦𝑖 𝑡 = 𝑚𝑖 𝑡 − 𝑡0
𝑖  + 𝑐𝑖  

𝑡 ∈ [𝑡0
𝑖  , 𝑡0

𝑖 + ∆𝑖] 

As there may be multiple continuous effect actions that 
affect a continuous-time variable, yi formulation is ex-
tended for h actions as the following equation.  

𝑦𝑖 𝑡 =

 
 
 

 
 𝑚𝑖 ,0   𝑡 − 𝑡0

𝑖 ,0 + 𝑐𝑖 ,0 ;    𝑡 ∈ [𝑡0
𝑖 ,0 , 𝑡0

𝑖 ,0 + ∆𝑖 ,0]

𝑚𝑖 ,1   𝑡 − 𝑡0
𝑖 ,1 + 𝑐𝑖 ,1 ;    𝑡 ∈ [𝑡0

𝑖 ,1 , 𝑡0
𝑖 ,1 + ∆𝑖 ,1]

⁞                                                                            

𝑚𝑖 ,   𝑡 − 𝑡0
𝑖 ,𝑘 + 𝑐𝑖 ,𝑘  ;    𝑡 ∈ [𝑡0

𝑖 ,𝑘  , 𝑡0
𝑖 ,𝑘 + ∆𝑖 , ]

  

The continuous-time variable yi could be represented as a 
set of line segments where a line segment is modeled by a 
tuple fi,j =〈 ci,j , mi,j , ∆i,j , t0

i, j
 〉, and fi,j defines yi in the in-

terval of [ t0
i, j

, (t0
i, j

+ ∆i, j
 
) ]. In the planning domain, fi,j 

corresponds to a scheduled continuous-effect action ai,j. 
The terms ci, j , mi, j and ∆i, j  are derived from the action 
definition and its parameters and t0

i, j 
is assigned by the 

planner. Based on this notation, before it is scheduled by 
the planner, a continuous effect action ai,j, is represented by 
ki,j, where ki,j is a tuple 〈 ci, j , mi, j , ∆i, j 〉. Since its

 
value is 

determined during the scheduling of that action, t0
i, 

is not 
included in ki,j. 
 A validation step is performed to eliminate the conflicts 
of different continuous-effect actions which affect a conti-
nuous-time variable. The rule for the validity depends on 
the context of the continuous-time variables. For the path 
sharing scenario, the corresponding validation rule checks 
whether a pair of line segments intersects. Let validation 
rule Ѵ be a first order formula where; 

Ѵ𝑖 ,𝑗 ,𝑙 ,𝑘 = {𝑡𝑟𝑢𝑒 𝑖𝑓 𝑓𝑖 ,𝑗  𝑎𝑛𝑑 𝑓𝑘 ,𝑙  𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡} 

Further let F (fi,j  F) be the set of all scheduled continuous 
changes of all continuous time variables. Validation of the 
set F is expressed by function valid where; 

𝑣𝑎𝑙𝑖𝑑 𝐹        Ѵ𝑖 ,𝑗 ,𝑘 ,𝑙  
𝑖 ,𝑗 ,𝑘 ,𝑙
𝑖≠𝑘

     

Finally let Smin be a special function to find the earliest 
possible start time t0

i, j
, for the action ki,j preserving validity 

of the set of current variables F. 

𝑆𝑚𝑖𝑛  𝑘𝑖,𝑗  = 𝑎𝑟𝑔𝑚𝑖𝑛  to
i     𝑣𝑎𝑙𝑖𝑑    〈 𝑐𝑖  ,𝑚𝑖  ,∆𝑖  , 𝑡𝑜

𝑖 〉 ∪ 𝐹   } 

 A sample illustration of a continuous-effect action in the 
storage domain can be given as follows. Positions of each 
agents are represented by individual continuous-time va-
riables. Move action definition is given as: 

action_move( ? agent, ? from, ? to) 

where ?agent , ?from  and ?to denotes an agent,  the initial 
depot of the agent and the destination depot respectively. 
The position of agenti is represented by a continuous-time 
variable yi, loc is a predefined function that returns the 
position of the related entrance from depot to the path, and 
speed is another predefined function that returnes the speed 
of an agent. Before it is scheduled by the planner, a move 
action for agenti is represented with ki,j which denotes the 
related continuous change. According to the given action 
definition, ki,j , is given below. 

𝑘𝑖 ,𝑗 = 〈 𝑐𝑖 ,𝑗  , 𝑚𝑖 ,𝑗  , ∆𝑖 ,𝑗   〉 

mi,j=  
   speed ?agent  ;  𝑙𝑜𝑐 ? 𝑓𝑟𝑜𝑚 < 𝑙𝑜𝑐(? 𝑡𝑜) 

 -speed ?agent  ;  𝑙𝑜𝑐 ? 𝑓𝑟𝑜𝑚 > 𝑙𝑜𝑐(? 𝑡𝑜) 
  

∆𝑖 ,𝑗 =  𝑙𝑜𝑐 ? from − 𝑙𝑜𝑐 ? to   𝑠𝑝𝑒𝑒𝑑 ? agent   

𝑐𝑖 ,𝑗 = 𝑙𝑜𝑐 ? 𝑓𝑟𝑜𝑚  

Note that, mi,j takes a positive or negative value depending 
on the direction of the movement. In order to generate a 
valid plan, when a new continuous effect action is being 
scheduled, its validity with F (the set of previously sche-
duled move actions) must be checked. In this domain, 
valid(F) satisfies that no two pair of the scheduled actions 
for different agents intersect with each other resulting in a 
collision-free plan. In other words, as the variables yi(t) and 
yj(t) defines positions of any two agents, no t exists where 
yi(t) = yj(t). Whenever valid(F) is satisfied, the planner 
may select action_move to be scheduled for t0

i, j
, if the 

related 〈 ci,j , mi,j , ∆i,j , t0
i, j

 〉 preserves the validity of F . 

Extended Forward Chaining Algorithm 

TLPlan-C is an extended forward chaining temporal plan-
ner which uses the new continuous model to handle conti-
nuous change in planning problems. The base temporal 



planning algorithm is adapted from TLPlan which runs 
forward chaining search on the action space. Initially, L, 
the list of successor states includes only the initial state and 
F, the set of scheduled continuous changes is empty. At 
each step, the state s with the lowest cost is selected within 
the successor list L. Then, for each action of which precon-
ditions are met at state s, a new successor state s

+
 is created 

and inserted into L. Each state s is associated with a time-
stamp which denotes the actual time the state will occur 
during the execution of the plan. Additionally, each state 
maintains an event queue to hold at-end effects of pre-
viously scheduled actions, to be applied in future planning 
steps. 
 Algorithm1 presents the main flow of TLPlan-C. Ad is 
set of discrete effect actions where Ac is the set of conti-
nuous effect actions. The first iteration in the algorithm 
handles discrete effect actions (Ad). This part of the algo-
rithm is almost identical to TLPlan. A discrete effect action 
a is applied to state s to create a successor state if its pre-
conditions are met at state s. To apply an action, planner 
generates a new successor state s+ which inherits the state 
information, timestamp and event queue of s. Standard 
actions do not advance the world clock, but only instant 
effects of action a are applied to state s

+
 and at-end effects 

of action a are inserted into the event queue of s
+
. In addi-

tion to standard actions, there is one special action: the 
unqueue-event action, which advances the world clock. 
This action moves time forward to the next scheduled point 
in time and applies all at-end effects that are scheduled for 
that time.  
 The second iteration in the algorithm handles continuous 
effect actions. The critical factor for planning with conti-
nuous effect actions is continuous treatment of time. If only 
a limited set of discrete time steps (ie. decision epochs) are 
considered to schedule actions, it is not guaranteed to find 
optimal plans.  
 TLPlan-C employs an extended branching scheme to 
cover continuous time by relaxing the constraint that each 
action must start at only decision epochs. The function Smin 
calculates the earliest possible start time for a continuous 
effect action, considering a tuple k and the set F. During 
planning, while expanding a state s with applying conti-
nuous effect action a, successor state s

+
 with timestamp t0 

and action a is generated if preconditions of a are met at t0, 
where t0 is the earliest possible start time calculated by Smin 
function. Note that t0 is a point in continuous time, inde-
pendent from decision epochs. However, calculation of t0 
may depend on other continuous effect action choices that 
appear after t0. Therefore a backward branching mechan-
ism is adopted in order to handle states with timestamp t0 
that are released later than t0. Before branching to an earlier 
state, it must be checked that whether the discrete precon-
ditions of action a are also satisfied at t0. The special func-
tion evalAt checks the preconditions of action a at the first 
predecessor state with the timestamp earlier than t0. This 
predecessor state has the same state information with the 
potential new state at t0 due to the fact that no discrete 
change appears between any two sequential timestamps. If 

the preconditions are met, this predecessor state of s is 
duplicated as s

+
 using the predecessor function, and time-

stamp of s
+
 is set to t0. After generation of s

+
, the instant 

effects of action a are applied to s
+
 and at-end effects are 

inserted to the event queue of s
+
. Since the applied action 

is a continuous-effect action, the continuous change related 
with that action (represented by the tuple f) is inserted into 
F. Note that, the backward branching does not prune the 
state s but only generates s

+
 as a successor of earlier states. 

 Continuous effect actions have both discrete precondi-
tions and continuous-change constraints. Although conti-
nuous change constraints are satisfied at timestamp t0, it 
might be the case that the discrete preconditions are not 
met at that time. In that case, the next decision epoch, in 
which discrete preconditions are satisfied, is selected. In 
general, a continuous effect action a, that cannot be applied 
at t0 is scheduled for a discrete timestamp where its pre-

  

 Plan(<L,F> ,Ad, Ac, Goal) 

  if(s⊨ Goal and s.Q={}) 
return(s) 

  else 

 s:=minCost(L) 

 for all a | a  Ad and s⊨pre(a) 
s
+≔s 

s
+
.prev≔s 

if a != unqueue-event 

s
+≔ApplyInstantEffects(s,a) 

s
+
.Q≔AddDelayedEvents(s,a) 

else 

newTime≔eventTime(front(s.Q)) 

s
+
.time≔newTime 

while eventTime(front(s+.Q))== newTime 

e≔removeFront(s
+
.Q) 

s
+≔ ApplyEffect(s

+
,e) 

  L.insert(s+) 

 

 for all a | a  Ac
 

t0:= Smin(a.k,F) 

if evalAt(t0,pre(a)) and  t0 < s.time 

s
+≔ predecessor(to,s) 

s
+
.time≔t0 

s
+≔ApplyInstantEffects(s,a) 

s
+
.Q≔AddDelayedEvents(s,a) 

F.insert(a.k, s+.time) 

L.insert(s+) 

else if s⊨pre(a) and valid(F, a.k, s.time) 

s
+≔s 

s
+
.prev≔s 

s
+≔ApplyInstantEffects(s,a) 

s
+
.Queue≔AddDelayedEvents(s,a) 

F.insert(a.k, s
+
.time) 

L.insert(s
+
) 

 Plan(<L,F> ,Ad, Ac, Goal) 

 

Algorithm1: TLPlan-C algorithm 



conditions are met and the validity of continuous-time 
variables are preserved. 

Optimality 

 Makespan optimal plan for a problem involves the actions 
scheduled for their earliest possible times to minimize the 
total duration of the plan. TLPlan-C as an extended for-
ward chaining temporal planner, searches for every possi-
ble permutation of actions and considers continuous time 
so that each action starts at the earliest possible start time 
considering both discrete and continuous constraints of that 
action. That is, the start times of actions are not limited to a 
small set of decision epochs. Therefore, the optimality of 
the constructed plan is guaranteed. 

An Example Scenario  

The introduced storage domain involves packages to be 
transported from their initial depots to destination depots. 
Clearly, the agents should move on the shared path to go 
from one depot to another. During the movement of an 
agent on the shared path, its position on the path changes 
continuously in time and the rate of that change is defined 
as the speed of that agent.  

To exemplify how TLPlan-C works, we use a sample 
problem instance and analyze the constructed final plan for 
this problem. In the example problem, there are three 
agents from two different agent types. Agent1 is a large 
carrier, and can pick both large and small packages. Agent2 
and Agent3 are small carriers and they can only pick small 
packages. There are two small and a large package in this 

domain to be transported from one depot to another. The 
sample problem formulation including the initial and goal 
state definitions is shown in figure 4. A move action 
should be executed for each object to reach the goal state. 
Duration of pickup and release actions is assumed to be 
constant. However, duration of a move action depends on 
the distance between initial and final locations and the 
speed of the agent executing the action. 

Figure 5 presents the constructed plan for this problem 
by TLPlan as a decision epoch planner. As the results illu-
strate, although there is a better plan, TLPlan constructs a 
suboptimal one. The decision epoch planning approach has 
two interrelated drawbacks in solving such a problem. 
Firstly, it does not provide continuous treatment of time. 
Secondly, it is not capable of modeling continuous change 
in a planning domain. These properties of decision epoch 
planners cause their final plans to be longer than the op-
timal plan. This is due to their simple mutex rules to avoid 
mutually conflicting situations (e.g., collisions in the ex-
ample domain). According to this inadequate rule, in the 
example domain, a path can be used by only a single agent 
during its movement. The other agents are not allowed in 
the path (i.e., the move actions of these agents are not 
scheduled) during this time which causes delays in the total 
plan. Since TLPlan is restricted to discrete changes in the 
planning domain, it does not ensure simultaneous use of 
the shared path. Although all possible permutations of 
actions are explored, the action start times are selected 
from the set of decision epochs. As a result, the optimal 
solution cannot be found.  

On the other hand, TLPlan-C uses the advantage of both 
its continuous model representation and the additional 
branching scheme performed during the search. Therefore, 
the resulting plan allows multiple agents to share the path 
concurrently whenever a collision-free path-sharing is 
possible.  
 Figure 6 depicts the constructed plan by TLPlan-
C. The graph in the figure plots the positions of agents on 
the path during their move. The horizontal axis indicates 
the time elapsed since the start of the plan. The vertical 
axis indicates the positions of the agents on the shared 
path. The positions of 7 depot entrances are marked on the 
vertical axis. The continuous model representation of 
TLPlan-C and the extended branching scheme using this 
model enables concurrent move actions to be scheduled in 
a collision-free setting. Not only the decision epochs but 
also the intermediate points in time (e.g., t,1 t2 and t5) are 
considered for scheduling actions to reach the optimal 
solution. These points are derived by the continuous mod-
el, and inserted into the search tree by backward branching 
method. Through this extension, TLPlan-C can schedule 
actions for the earliest possible points in the timeline. Con-
sequently, the makespan-optimal plan is found by the best 
first search mechanism. The numerical analysis of both 
approaches for different performance measures is given in 
table 1. The results show that TLPlan-C finds the optimal 
plan and solves the problem more efficiently than TLPlan. 
TLPlan evaluates all permutations of actions in a longer 

(define (initial-state) 

   (largepackage pack1) 

   (smallpackage pack2) 

   (smallpackage pack3) 
 

   (large-carrier agent1) 

   (small-carrier agent2) 

   (small-carrier agent3) 
 

   (at agent1 depot4)  

   (at agent2 depot2)  

   (at agent3 depot1)  
 

   (in pack1 depot6) 

   (in pack2 depot7) 

   (in pack3 depot3) 
 

   (= (speed agent1) 0.25)  

   (= (speed agent2) 0.90) 

   (= (speed agent3) 0.36) 

) 

 

(define (goal) 

   (in pack1 depot5) 

   (in pack2 depot4) 

   (in pack3 depot1) 

) 

Figure 4: Problem definition 



time than that of TLPlan-C. This is due to the deeper 
search tree expanded in TLPlan, whereas, TLPlan-C finds 
the optimal solution at a shallower depth, before expanding 
deeper nodes with makespan cost higher than the optimal 
cost.  
 

 TLPlan TLPlan-C 

number of nodes generated 5341 704 

number of nodes searched 3268 557 

CPU time (sec) 0.665 0.140 

duration of constructed plan 26.3 15.2 

number of actions 12 12 

Table 1: Results for the Storage Domain 

Conclusion 

In this paper, we introduce realistic planning problems 
including both discrete/continuous effect actions. We show 
that existing temporal planning algorithms are not com-
plete for these problems. Then, we present TLPlan-C as an 
extension to an existing forward chaining temporal plan-
ner: TLPlan. We propose a continuous model to represent 
continuous change and to be used with the extended tem-
poral planner. A backward branching mechanism is inte-
grated into TLPlan-C to ensure completeness on the conti-
nuous model. This new extended algorithm finds makes-
pan-optimal solutions. Due to the complete state informa-
tion maintained by the algorithm, this new approach offers 
the same advantage of the easy implementation of the 
heuristic guidance as standard forward chaining planners.  
The future work includes investigation of special pruning 
techniques for temporally identical states and use of heuris-
tic guidance for makespan estimation to reduce the com-
plexity.  
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Figure 5: Plan constructed by TLPlan 

Figure 6: Optimal plan constructed by TLPlan-C 
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