

TLplan-C: An Extended Temporal Planner

for Modeling Continuous Change

Serdar Kecici and Sanem Sariel Talay
Department of Computer Engineering

Istanbul Technical University, Istanbul, Turkey

{kecici,sariel}@itu.edu.tr

Abstract

This paper presents realistic planning domains where
changes cannot be represented by only instant updates of
world states but representation of continuous change is also
required. Since existing temporal planners cannot model
such planning domains, they fail to find optimal plans for
these domains. We propose a continuous model to represent
continuous change in complex planning domains. Then, we
present TLplan-C as an extension to an existing forward
chaining temporal planner: TLplan. TLplan-C uses the new
continuous model and applies a backward branching me-
chanism to schedule actions on the continuous timeline.
These properties of the planner ensure optimality of the
constructed plan, hence, completeness on the continuous
model. Multi-depot multi-vehicle storage domain as a sam-
ple planning domain is presented to analyze the perfor-
mance of TLplan-C.

Introduction

Recently, considerable progress has been made to ensure
efficiency of planners in solving more complex problems.
Domain definition languages are extended in order to wi-
den the scope of the planning problems. Optimization
metrics are defined for the planning problems to evaluate
the quality of the constructed plans. Due to the real-world
constraints, these metrics are designed to consider both
action costs and plan duration. Total duration of the plan is
also an important metric. This fact necessitates integration
of planning and scheduling.
 (Smith et al.2000) classifies planners in relation to the
applied scheduling methodology in three groups: stratified,
interleaved and homogenous planning and scheduling. In
planners which applies stratified planning and scheduling,
action choices are made first, and then, the resulting plan is
scheduled in a separate phase. Crickey3 (Coles et al. 2008)
uses this strategy through specifying the action choices by
a classical planner, and then scheduling the selected ac-
tions. Although the planner is guided by the scheduler for
selecting schedulable actions in the constructed plan, the
final plan is not guaranteed to be optimal. This is due to the
fact that makespan optimal plans depend on the selection
of actions considering the schedule of these actions. In-
stead of separately executing planning and scheduling
phases, these phases may be interleaved, in which essential

constraints such as action ordering decisions are made
while actions to be executed are chosen. Partial order plan-
ners like HSTS (Muscetolla 1993) lxtet (Ghallab & Laru-
elle1994) use this strategy. In these planners, a plan is
constructed by incremental selection of actions together
with a set of ordering constraints. Although the planning
phase is not totally independent from the scheduling phase,
these planners do not maintain absolute state information
in search nodes during the search. This prevents solving
complex problems where action choices need perfect
knowledge of the state information. In homogenous plan-
ning and scheduling approach, the whole problem is for-
mulated as a composite planning and scheduling problem,
and the entire problem is solved in a uniform way in which
the timing of actions is directly considered during plan-
ning. Forward chaining temporal planners use this strategy
and use the advantage of providing complete state informa-
tion. TLPlan (Bacchus &Ady 2001) which is an extension
of the system introduced by (Bacchus & Kabanza1998) is
capable of modeling and solving planning problems with
metric quantities and actions with varying durations. Sapa
(Do & Kambhampati 2003), another forward chaining
planner, uses a similar search procedure to TLPLAN and
defines domain independent heuristics to control its search
instead of domain specific heuristics and temporal control
formulas. In both of these planners, the scheduled time of
an action is determined when the action is inserted into
plan. Each search node maintains its corresponding world
state in which the timing information is also included. The
transition to a new world state is provided by applying an
action, or advancement of the time value of the world.
Forward chaining temporal planners can construct optimal
plans while minimizing action costs or total duration (ma-
kespan) of the plan.
 While integrated planning and scheduling techniques
provide improvements on the solution quality, they have
poor performance on the realistic problems where changes
cannot be represented by only instant updates of the world
states. Effects of an action in the real world may involve
continuous change which should be considered by the
planner in order to construct a valid plan. For instance, in
an environment with mobile agents, while choosing a
move action, the planner should be aware of time depen-
dent continuous change in the positions of the other mov-

ing agents, in order to come up with a valid plan without
collisions.
 Some of the earlier studies have investigated planning in
domains with continuous linear change. TM-LPSAT (Shin
& Davis 2005) as an extension to SAT-based planning
framework handles concurrent actions with continuous
change. COLIN (Coles et al. 2009) is another effective
planner which plans with mixed discrete-continuous nu-
meric changes. However, continuous change in both sys-
tems represents increase or decrease of singular values,
which is appropriate for modeling consumable resources
but not adequate to handle multiple interacting changes
such as movements of several agents in a shared path.
 In this paper, we introduce planning domains including
actions with continuous change effects, and we propose an
optimal temporal planner TLPlan-C assisted by a conti-
nuous model which is able to represent continuous change.
Our approach extends forward chaining temporal planning
algorithm to provide completeness and optimality in do-
mains with continuous change. We propose our planner as
an extension to TLPlan system and investigate results for
an example domain.
 In the following sections, we describe the example do-
main and review the TLPlan approach. We proceed by
describing the continuous model and TLPlan-C algorithm.
Finally, we discuss optimality of TLPlan-C and present its
solution in the example problem and evaluate its plan qual-
ity compared to that of TLPlan.

Planning Domains with Continuous Change

In this paper, we focus on solving complex planning prob-
lems where the domain includes continuous change that is
required to be handled. Some definitions are given here to
formulate the overall problem.

Definition 1: (discrete-change) A discrete change is an
effect of an action that appears at-start or at-end of the
action and reveals an instant change of the state such as
addition/deletion of predicates.

Definition 2: (continuous-time variable) A continuous-
time variable y is a variable whose value is updated in
continuous time.

Definition 3: (continuous-change) A continuous change

refers to a linear change in the value of a specific conti-

nuous-time variable. It can be expressed by a bounded

linear function of time.

Definition 4: (action) An action correspond to a transition

of world states and is represented by a condition, several

effects and a positive duration.

Definition 5: (discrete-effect action) A discrete-effect

action is an action which has only discrete-change effects.

Definition 6: (continuous-effect action) A continuous-

effect action is an action which has one or more conti-

nuous-change effects.

Definition 7: (validation rule) Validation rule defines a
geometrical conflict detection rule about continuous-time
variables that must hold all over the plan. Implementation
of the validation rule depends on the domain definition.

 To illustrate an example of a planning domain with
continuous-change effects, we present the path sharing
problem. Figure 1 shows the multi package - multi depot
storage domain which consists of several depots connected
with a shared narrow corridor which is a one-lane shared
path. There are multiple packages to be moved to their
destinations in this multi-agent environment. Each agent is
capable of picking up/dropping off a single package and
moving from one depot to another using the shared path
either with or without a package. We assume that agents
move on the path with a constant speed that is predefined
for each agent in the domain definition. Positions (one
dimensional) of the open doors of the depots on the path
are also defined in the domain definition.
 This example domain includes both discrete and conti-
nuous-effect actions. The shared path (corridor) is the criti-
cal resource that should be shared in time among agents in
order to find better quality plans. An agent can enter the
one-lane shared path and move on the path unless it col-
lides with any other agent concurrently moving on the
shared path. Validation rule for that scenario is the avoid-
ance of collisions among agents. This rule only applies to
continuous-effect actions.
 The expected solution for this problem is a sequence of
precisely scheduled actions that leads the initial state of the
world to the goal state, and the optimization metric is the
minimization of makespan duration of the constructed
plan. Existing temporal planners do not take into consider-
ation of continuous-effect actions, and cannot construct
optimal plans in such domains.

TLPlan

Forward chaining is an efficient reasoning approach which
performs progressive search in the search space. This rea-
soning mechanism is also used as an efficient search strat-
egy for temporal planning. Although forward chaining

Depot2 Depot4 Depot6

Depot5 Depot7Depot1 Depot3

<--shared path -->

Figue 1: Storage domain

approach does not provide a “goal directed” search as in
backward chaining, it presents some key advantages. For
example, even if a backward-chaining planner starts with a
completely described initial world and actions that
preserve the completeness of this description, it will still
have only incomplete knowledge of the world state at the
various points of its search space. Partial order planners
also suffer from this problem. The points of their search
space are incomplete partially ordered plans, and at the
various stages of an incomplete plan there is only a limited
knowledge of the state of the world (Bacchus& Kabanza
2000). On the other hand, forward chaining temporal
planners have complete information about world states
during search, and that information can provide powerful
guidance for the search (Bacchus &Ady 2001). This fea-
ture of forward chaining is required in problems including
actions that highly depend on the state information to
match action preconditions and to estimate duration or cost
of the actions. For instance, in the storage domain, in order
to fire the collision-avoidance rule during the expansion of
a new move action in a state, the precise start times of the
previously scheduled move actions must be known in ad-
vance. Additionally, as a result of complete state informa-
tion, such planners can support richer planning
representations that can model more complex resources
(Bacchus & Teh 1998).
 To get advantages of forward chaining, our approach is
based on TLPLAN, a forward chaining temporal planner
originally proposed by (Bacchus &Ady 2001). A search
node in TLPlan includes the world state and the action
applied along with the world clock that defines the start
time of that action. In other words applying an action at a
state means that this action is scheduled for the world clock
of that state. The search proceeds by applying new actions
or advancing the world clock towards finding a complete
temporal plan. Note that, the application of an action does
not advance the world clock but only instant effects of the

action are applied. The at-end effects of that action are set
to be applied when the world clock is advanced to the end-
ing time of that action. The advance of the world clock is
provided by a special action which is applicable at any
state, and the only effect of that action is setting the world
clock to the next time point. To avoid infinite branching
factor, forward chaining planners restrict available time
points to a small set of special time points called decision
epochs (Cushing et al. 2007) where a previously scheduled
action terminates. This idea underlies the fact that a world
state does not change at any time point except these deci-
sion epochs. The suitable time points to schedule a new
action are selected only from the set of these decision
epochs since no change occurs between these points. It has
been shown that (Little & Aberdeen 2005) this method is
complete and optimal under the assumption that TGP-style
actions are used in which two actions do not overlap in any
way if an effect or precondition of one is the negation of an
effect or precondition of the other. However, as the set of
decision epochs does not cover continuous timeline but
only discrete time points, the planners employing this
strategy (e.g, TLPlan), are incomplete if the problem in-
volves continuous effect actions. A sample problem in-
stance with two agents is illustrated in figure 2. While the
vertical axis shows the positions of the agents on the
shared path, the horizontal axis shows the time line. The
positions of 7 depot entrances are marked on the vertical
axis. The graph illustrates the makespan-optimal plan for
executing two move actions by the two agents. The critical
factor in getting the optimal plan is scheduling the second
move action for time point t1 (instead of t2), which is not
included in the standard set of the decision epochs. Exist-
ing temporal planners cannot construct an optimal plan in
such cases. This is due to their lack of continuous effect
action representations and incapability of scheduling ac-
tions for time points outside the decision epoch set.

TLPlan-C

As decision epoch temporal planners are not optimal for
planning domains including continuous effect actions, we
propose TLPlan-C, an extended temporal planner to
address continuous changes. Figure 3 shows the planer
architecture. There are two interrelated key features we
concentrate on. Firstly, we introduce a continuous model
which can represent continuous effect actions by conti-
nuous-time variables and some validation functions to
handle interaction between these variables. Secondly, we
propose an extended forward chaining temporal planning

Extended Forward

Chaining Algorithm

Continuous

Model

Figure 3: TLPlan-C Architecture

Figure 2: Optimal solution for a sample

problem with two agents

agent1

agent2

position of agent1

position of agent2

move

move (depot2, depot6)

position
on path

time

depot1

depot2

depot3

depot4

depot5

depot6

depot7

(depot3, depot5)

algorithm which utilizes this model in order to construct
complete and makespan optimal plans.

Continuous Model

 As defined earlier, continuous change does not represent
an instantaneous change but a continuous change in the
value of a specific continuous-time variable during the
application of a continuous effect action. For instance, the
move action in the storage domain introduced earlier is a
continuous effect action because its effect can be
represented by a continuous-time variable which denotes
one dimensional position of the related agent on the path
during its movement.
 A domain may include several continuous-time va-
riables and each continuous effect action affects at least
one of these variables. Since continuous change represents
linear change in the value of a continuous-time variable, it
can be demonstrated by a linear equation. Let D be a plan-
ning domain including n continuous-time variables. Let a
be a continuous effect action of D that is scheduled to start
at t0

i
 and yi be a continuous-time variable (i ∈ {1,2, … ,n})

affected by a, mi be the rate of change, and ci be the initial
value of the variable. Further let ∆i be the duration of a
where t represents time elapsed since the start of the plan.
Accordingly the change in the value of yi can be formu-
lated as above.

𝑦𝑖 𝑡 = 𝑚𝑖 𝑡 − 𝑡0
𝑖 + 𝑐𝑖

𝑡 ∈ [𝑡0
𝑖 , 𝑡0

𝑖 + ∆𝑖]

As there may be multiple continuous effect actions that
affect a continuous-time variable, yi formulation is ex-
tended for h actions as the following equation.

𝑦𝑖 𝑡 =

 𝑚𝑖 ,0 𝑡 − 𝑡0

𝑖 ,0 + 𝑐𝑖 ,0 ; 𝑡 ∈ [𝑡0
𝑖 ,0 , 𝑡0

𝑖 ,0 + ∆𝑖 ,0]

𝑚𝑖 ,1 𝑡 − 𝑡0
𝑖 ,1 + 𝑐𝑖 ,1 ; 𝑡 ∈ [𝑡0

𝑖 ,1 , 𝑡0
𝑖 ,1 + ∆𝑖 ,1]

⁞

𝑚𝑖 , 𝑡 − 𝑡0
𝑖 ,𝑘 + 𝑐𝑖 ,𝑘 ; 𝑡 ∈ [𝑡0

𝑖 ,𝑘 , 𝑡0
𝑖 ,𝑘 + ∆𝑖 ,]

The continuous-time variable yi could be represented as a
set of line segments where a line segment is modeled by a
tuple fi,j =〈 ci,j , mi,j , ∆i,j , t0

i, j
 〉, and fi,j defines yi in the in-

terval of [t0
i, j

, (t0
i, j

+ ∆i, j

)]. In the planning domain, fi,j

corresponds to a scheduled continuous-effect action ai,j.
The terms ci, j , mi, j and ∆i, j are derived from the action
definition and its parameters and t0

i, j
is assigned by the

planner. Based on this notation, before it is scheduled by
the planner, a continuous effect action ai,j, is represented by
ki,j, where ki,j is a tuple 〈 ci, j , mi, j , ∆i, j 〉. Since its

value is

determined during the scheduling of that action, t0
i,

is not
included in ki,j.
 A validation step is performed to eliminate the conflicts
of different continuous-effect actions which affect a conti-
nuous-time variable. The rule for the validity depends on
the context of the continuous-time variables. For the path
sharing scenario, the corresponding validation rule checks
whether a pair of line segments intersects. Let validation
rule Ѵ be a first order formula where;

Ѵ𝑖 ,𝑗 ,𝑙 ,𝑘 = {𝑡𝑟𝑢𝑒 𝑖𝑓 𝑓𝑖 ,𝑗 𝑎𝑛𝑑 𝑓𝑘 ,𝑙 𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡}

Further let F (fi,j F) be the set of all scheduled continuous
changes of all continuous time variables. Validation of the
set F is expressed by function valid where;

𝑣𝑎𝑙𝑖𝑑 𝐹 Ѵ𝑖 ,𝑗 ,𝑘 ,𝑙
𝑖 ,𝑗 ,𝑘 ,𝑙
𝑖≠𝑘

Finally let Smin be a special function to find the earliest
possible start time t0

i, j
, for the action ki,j preserving validity

of the set of current variables F.

𝑆𝑚𝑖𝑛 𝑘𝑖,𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 to
i 𝑣𝑎𝑙𝑖𝑑 〈 𝑐𝑖 ,𝑚𝑖 ,∆𝑖 , 𝑡𝑜

𝑖 〉 ∪ 𝐹 }

 A sample illustration of a continuous-effect action in the
storage domain can be given as follows. Positions of each
agents are represented by individual continuous-time va-
riables. Move action definition is given as:

action_move(? agent, ? from, ? to)

where ?agent , ?from and ?to denotes an agent, the initial
depot of the agent and the destination depot respectively.
The position of agenti is represented by a continuous-time
variable yi, loc is a predefined function that returns the
position of the related entrance from depot to the path, and
speed is another predefined function that returnes the speed
of an agent. Before it is scheduled by the planner, a move
action for agenti is represented with ki,j which denotes the
related continuous change. According to the given action
definition, ki,j , is given below.

𝑘𝑖 ,𝑗 = 〈 𝑐𝑖 ,𝑗 , 𝑚𝑖 ,𝑗 , ∆𝑖 ,𝑗 〉

mi,j=
 speed ?agent ; 𝑙𝑜𝑐 ? 𝑓𝑟𝑜𝑚 < 𝑙𝑜𝑐(? 𝑡𝑜)

 -speed ?agent ; 𝑙𝑜𝑐 ? 𝑓𝑟𝑜𝑚 > 𝑙𝑜𝑐(? 𝑡𝑜)

∆𝑖 ,𝑗 = 𝑙𝑜𝑐 ? from − 𝑙𝑜𝑐 ? to 𝑠𝑝𝑒𝑒𝑑 ? agent

𝑐𝑖 ,𝑗 = 𝑙𝑜𝑐 ? 𝑓𝑟𝑜𝑚

Note that, mi,j takes a positive or negative value depending
on the direction of the movement. In order to generate a
valid plan, when a new continuous effect action is being
scheduled, its validity with F (the set of previously sche-
duled move actions) must be checked. In this domain,
valid(F) satisfies that no two pair of the scheduled actions
for different agents intersect with each other resulting in a
collision-free plan. In other words, as the variables yi(t) and
yj(t) defines positions of any two agents, no t exists where
yi(t) = yj(t). Whenever valid(F) is satisfied, the planner
may select action_move to be scheduled for t0

i, j
, if the

related 〈 ci,j , mi,j , ∆i,j , t0
i, j

 〉 preserves the validity of F .

Extended Forward Chaining Algorithm

TLPlan-C is an extended forward chaining temporal plan-
ner which uses the new continuous model to handle conti-
nuous change in planning problems. The base temporal

planning algorithm is adapted from TLPlan which runs
forward chaining search on the action space. Initially, L,
the list of successor states includes only the initial state and
F, the set of scheduled continuous changes is empty. At
each step, the state s with the lowest cost is selected within
the successor list L. Then, for each action of which precon-
ditions are met at state s, a new successor state s

+
 is created

and inserted into L. Each state s is associated with a time-
stamp which denotes the actual time the state will occur
during the execution of the plan. Additionally, each state
maintains an event queue to hold at-end effects of pre-
viously scheduled actions, to be applied in future planning
steps.
 Algorithm1 presents the main flow of TLPlan-C. Ad is
set of discrete effect actions where Ac is the set of conti-
nuous effect actions. The first iteration in the algorithm
handles discrete effect actions (Ad). This part of the algo-
rithm is almost identical to TLPlan. A discrete effect action
a is applied to state s to create a successor state if its pre-
conditions are met at state s. To apply an action, planner
generates a new successor state s+ which inherits the state
information, timestamp and event queue of s. Standard
actions do not advance the world clock, but only instant
effects of action a are applied to state s

+
 and at-end effects

of action a are inserted into the event queue of s
+
. In addi-

tion to standard actions, there is one special action: the
unqueue-event action, which advances the world clock.
This action moves time forward to the next scheduled point
in time and applies all at-end effects that are scheduled for
that time.
 The second iteration in the algorithm handles continuous
effect actions. The critical factor for planning with conti-
nuous effect actions is continuous treatment of time. If only
a limited set of discrete time steps (ie. decision epochs) are
considered to schedule actions, it is not guaranteed to find
optimal plans.
 TLPlan-C employs an extended branching scheme to
cover continuous time by relaxing the constraint that each
action must start at only decision epochs. The function Smin
calculates the earliest possible start time for a continuous
effect action, considering a tuple k and the set F. During
planning, while expanding a state s with applying conti-
nuous effect action a, successor state s

+
 with timestamp t0

and action a is generated if preconditions of a are met at t0,
where t0 is the earliest possible start time calculated by Smin
function. Note that t0 is a point in continuous time, inde-
pendent from decision epochs. However, calculation of t0
may depend on other continuous effect action choices that
appear after t0. Therefore a backward branching mechan-
ism is adopted in order to handle states with timestamp t0
that are released later than t0. Before branching to an earlier
state, it must be checked that whether the discrete precon-
ditions of action a are also satisfied at t0. The special func-
tion evalAt checks the preconditions of action a at the first
predecessor state with the timestamp earlier than t0. This
predecessor state has the same state information with the
potential new state at t0 due to the fact that no discrete
change appears between any two sequential timestamps. If

the preconditions are met, this predecessor state of s is
duplicated as s

+
 using the predecessor function, and time-

stamp of s
+
 is set to t0. After generation of s

+
, the instant

effects of action a are applied to s
+
 and at-end effects are

inserted to the event queue of s
+
. Since the applied action

is a continuous-effect action, the continuous change related
with that action (represented by the tuple f) is inserted into
F. Note that, the backward branching does not prune the
state s but only generates s

+
 as a successor of earlier states.

 Continuous effect actions have both discrete precondi-
tions and continuous-change constraints. Although conti-
nuous change constraints are satisfied at timestamp t0, it
might be the case that the discrete preconditions are not
met at that time. In that case, the next decision epoch, in
which discrete preconditions are satisfied, is selected. In
general, a continuous effect action a, that cannot be applied
at t0 is scheduled for a discrete timestamp where its pre-

 Plan(<L,F> ,Ad, Ac, Goal)

 if(s⊨ Goal and s.Q={})
return(s)

 else

 s:=minCost(L)

 for all a | a Ad and s⊨pre(a)
s
+≔s

s
+
.prev≔s

if a != unqueue-event

s
+≔ApplyInstantEffects(s,a)

s
+
.Q≔AddDelayedEvents(s,a)

else

newTime≔eventTime(front(s.Q))

s
+
.time≔newTime

while eventTime(front(s+.Q))== newTime

e≔removeFront(s
+
.Q)

s
+≔ ApplyEffect(s

+
,e)

 L.insert(s+)

 for all a | a Ac

t0:= Smin(a.k,F)

if evalAt(t0,pre(a)) and t0 < s.time

s
+≔ predecessor(to,s)

s
+
.time≔t0

s
+≔ApplyInstantEffects(s,a)

s
+
.Q≔AddDelayedEvents(s,a)

F.insert(a.k, s+.time)

L.insert(s+)

else if s⊨pre(a) and valid(F, a.k, s.time)

s
+≔s

s
+
.prev≔s

s
+≔ApplyInstantEffects(s,a)

s
+
.Queue≔AddDelayedEvents(s,a)

F.insert(a.k, s
+
.time)

L.insert(s
+
)

 Plan(<L,F> ,Ad, Ac, Goal)

Algorithm1: TLPlan-C algorithm

conditions are met and the validity of continuous-time
variables are preserved.

Optimality

 Makespan optimal plan for a problem involves the actions
scheduled for their earliest possible times to minimize the
total duration of the plan. TLPlan-C as an extended for-
ward chaining temporal planner, searches for every possi-
ble permutation of actions and considers continuous time
so that each action starts at the earliest possible start time
considering both discrete and continuous constraints of that
action. That is, the start times of actions are not limited to a
small set of decision epochs. Therefore, the optimality of
the constructed plan is guaranteed.

An Example Scenario

The introduced storage domain involves packages to be
transported from their initial depots to destination depots.
Clearly, the agents should move on the shared path to go
from one depot to another. During the movement of an
agent on the shared path, its position on the path changes
continuously in time and the rate of that change is defined
as the speed of that agent.

To exemplify how TLPlan-C works, we use a sample
problem instance and analyze the constructed final plan for
this problem. In the example problem, there are three
agents from two different agent types. Agent1 is a large
carrier, and can pick both large and small packages. Agent2
and Agent3 are small carriers and they can only pick small
packages. There are two small and a large package in this

domain to be transported from one depot to another. The
sample problem formulation including the initial and goal
state definitions is shown in figure 4. A move action
should be executed for each object to reach the goal state.
Duration of pickup and release actions is assumed to be
constant. However, duration of a move action depends on
the distance between initial and final locations and the
speed of the agent executing the action.

Figure 5 presents the constructed plan for this problem
by TLPlan as a decision epoch planner. As the results illu-
strate, although there is a better plan, TLPlan constructs a
suboptimal one. The decision epoch planning approach has
two interrelated drawbacks in solving such a problem.
Firstly, it does not provide continuous treatment of time.
Secondly, it is not capable of modeling continuous change
in a planning domain. These properties of decision epoch
planners cause their final plans to be longer than the op-
timal plan. This is due to their simple mutex rules to avoid
mutually conflicting situations (e.g., collisions in the ex-
ample domain). According to this inadequate rule, in the
example domain, a path can be used by only a single agent
during its movement. The other agents are not allowed in
the path (i.e., the move actions of these agents are not
scheduled) during this time which causes delays in the total
plan. Since TLPlan is restricted to discrete changes in the
planning domain, it does not ensure simultaneous use of
the shared path. Although all possible permutations of
actions are explored, the action start times are selected
from the set of decision epochs. As a result, the optimal
solution cannot be found.

On the other hand, TLPlan-C uses the advantage of both
its continuous model representation and the additional
branching scheme performed during the search. Therefore,
the resulting plan allows multiple agents to share the path
concurrently whenever a collision-free path-sharing is
possible.
 Figure 6 depicts the constructed plan by TLPlan-
C. The graph in the figure plots the positions of agents on
the path during their move. The horizontal axis indicates
the time elapsed since the start of the plan. The vertical
axis indicates the positions of the agents on the shared
path. The positions of 7 depot entrances are marked on the
vertical axis. The continuous model representation of
TLPlan-C and the extended branching scheme using this
model enables concurrent move actions to be scheduled in
a collision-free setting. Not only the decision epochs but
also the intermediate points in time (e.g., t,1 t2 and t5) are
considered for scheduling actions to reach the optimal
solution. These points are derived by the continuous mod-
el, and inserted into the search tree by backward branching
method. Through this extension, TLPlan-C can schedule
actions for the earliest possible points in the timeline. Con-
sequently, the makespan-optimal plan is found by the best
first search mechanism. The numerical analysis of both
approaches for different performance measures is given in
table 1. The results show that TLPlan-C finds the optimal
plan and solves the problem more efficiently than TLPlan.
TLPlan evaluates all permutations of actions in a longer

(define (initial-state)

 (largepackage pack1)

 (smallpackage pack2)

 (smallpackage pack3)

 (large-carrier agent1)

 (small-carrier agent2)

 (small-carrier agent3)

 (at agent1 depot4)

 (at agent2 depot2)

 (at agent3 depot1)

 (in pack1 depot6)

 (in pack2 depot7)

 (in pack3 depot3)

 (= (speed agent1) 0.25)

 (= (speed agent2) 0.90)

 (= (speed agent3) 0.36)

)

(define (goal)

 (in pack1 depot5)

 (in pack2 depot4)

 (in pack3 depot1)

)

Figure 4: Problem definition

time than that of TLPlan-C. This is due to the deeper
search tree expanded in TLPlan, whereas, TLPlan-C finds
the optimal solution at a shallower depth, before expanding
deeper nodes with makespan cost higher than the optimal
cost.

 TLPlan TLPlan-C

number of nodes generated 5341 704

number of nodes searched 3268 557

CPU time (sec) 0.665 0.140

duration of constructed plan 26.3 15.2

number of actions 12 12

Table 1: Results for the Storage Domain

Conclusion

In this paper, we introduce realistic planning problems
including both discrete/continuous effect actions. We show
that existing temporal planning algorithms are not com-
plete for these problems. Then, we present TLPlan-C as an
extension to an existing forward chaining temporal plan-
ner: TLPlan. We propose a continuous model to represent
continuous change and to be used with the extended tem-
poral planner. A backward branching mechanism is inte-
grated into TLPlan-C to ensure completeness on the conti-
nuous model. This new extended algorithm finds makes-
pan-optimal solutions. Due to the complete state informa-
tion maintained by the algorithm, this new approach offers
the same advantage of the easy implementation of the
heuristic guidance as standard forward chaining planners.
The future work includes investigation of special pruning
techniques for temporally identical states and use of heuris-
tic guidance for makespan estimation to reduce the com-
plexity.

References

Bacchus, F.; and Teh, Y. W. 1998. Making forward chaining

relevant. In Proc. AIPS, volume 4, 54–61. AAAI Press.

Bacchus, F. ; and Kabanza. F. 1998 Planning for temporally

extended goals. Annals of Mathematics and Artificial Intelli-

gence, 22(1-2):5–27.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics to

express search control knowledge for planning. Artificial Intelli-

gence 116:123–191.

Bacchus, F.; Ady, M. 2001. Planning with resources and concur-

rency: A forward chaining approach. Int. Joint Conf. on AI.

Coles, A. I.; Fox, M.; Long D.; and Smith, A. J.; 2008 Planning

with problems requiring temporal coordination. In Proc. 23rd

Nat. Conf. on AI (AAAI).

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009. Temporal

planning in domains with linear processes. In Proc. of IJCAI 09.

Cushing,W., Kambhampati, S.; Mausam M.; and Weld, D. 2007.

When is temporal planning really temporal?. In Proc. of IJCAI 07

Do, M. B.; and Kambhampati, S. 2003 SAPA: A multi-objective

metric temporal planner. JAIR, 20:155–194

Ghallab, M.; and Laruelle,H. 1994 Representation and control in

lxTeT: a temporal planner. In Proceedings of second Internation-

al Conference on Artificial Intelligence Planning Systems 61-67

Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle: A proba-

bilistic temporal planner. In AAAI’05.

Muscetolla, N.; 1993 HSTS Integrating Planning and Scheduling.

In Intelligent Scheduling Morgan Kaufmann.

Smith, D.E.; Frank, J.; and Jonsson A.K. 2000 Bridging the gap

between planning and scheduling. Knowledge Engineering Re-

view, 15(1),

Shin, J.-A., and Davis, E. 2005. Processes and continuous change

in a SAT-based planner. Artificial Intelligence 166(1-2):194–253.

agent1

agent2

agent3

time elapsed

move (d2,d7) move (d3,d1)

move (d6,d5)pick
(p1)

move (d7,d4)

move (d4,d6)

move
(d4,d3)

pick
(p2)

release
(p2)

pick
(p3)

release
(p1)

release
(p3)

4.0 16.0 24.020.0 28.00.0 2.0 6.0 8.0 12.010.0 26.00.0 14.0 22.018.0

Figure 5: Plan constructed by TLPlan

Figure 6: Optimal plan constructed by TLPlan-C

agent1

agent2

agent3

position of agent1 (y1(t))

position of agent2 (y2(t))

position of agent3 (y3(t))

depot1

depot2

depot3

depot4

depot5

depot6

depot7

move (d1,d3)

move (d4,d6)

move (d2,d7) move (d7,d4)

move (d7,d4)pick(P1)

pick(P2)

pick(P3)

release(P1)

release(P2)

release(P3)move (d3,d1)

position
on path

time elapsedt1 t2 t3 t4 t5
2.0 6.04.0 8.0 12.010.0 14.00.0

f1,1

f1,2
f2,2

f3,1
f3,2

f2,1

f3,1

f1,1

f2,1

f3,2

f1,2

f2,2

