
Combining Planning and Motion Planning: An Extended Abstract

Jaesik Choi and Eyal Amir
Department of Computer Science

University of Illinois at Urbana Champaign
Urbana, IL, 61801 USA
{jaesi,eyal}@illinois.edu

Abstract

Robotic manipulation is important for real, physical world
applications. General Purpose manipulation with a robot (eg.
delivering dishes, opening doors with a key, etc.) is demand-
ing. It is hard because (1) objects are constrained in posi-
tion and orientation, (2) many non-spatial constraints interact
(or interfere) with each other, and (3) robots may have multi-
degree of freedoms (DOF). In this paper we solve the prob-
lem of general purpose robotic manipulation using a novel
combination of planning and motion planning. Our approach
integrates motions of a robot with other (non-physical or
external-to-robot) actions to achieve a goal while manipulat-
ing objects. It differs from previous, hierarchical approaches
in that (a) it considers kinematic constraints in configuration
space (C-space) together with constraints over object manip-
ulations; (b) it automatically generates high-level (logical)
actions from a C-space based on a motion planning algo-
rithm; and (c) it decomposes a planning problem into small
segments, thus reducing the complexity of planning. In con-
clusion, we summarize the future research directions.

1. Introduction
Algorithms for general purpose manipulations of daily-life
objects are still demanding (e.g. keys of doors, dishes in a
dish washer and buttons in elevators). However, the com-
plexity of such planning algorithm is exponentially propor-
tional to the dimension of the space (the degree-of-freedom
(DOF) of the robot and the number of objects) (Canny
1987). It was shown that planning with movable objects
is P-SPACE hard (Chen and Hwang 1991; Dacre-Wright,
Laumond, and Alami 1992; Stilman and Kuffner 2005).
Nonetheless, previous works examined such planning in
depth (Likhachev, Gordon, and Thrun 2003; Kuffner and
LaValle 2000; Kavraki et al. 1996; Brock and Khatib 2000;
Alami et al. 1998; Stilman and Kuffner 2005) because of the
importance of manipulating objects. The theoretical analysis
gave rise to some practical applications (Alami et al. 1998;
Cortés 2003; Stilman and Kuffner 2005; Conner et al. 2007),
but general purpose manipulation remains out of reach for
real-world-scale applications.

Motion planning algorithms have difficulty to represent
non-kinematic constraints despite of its strength in planning

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with kinematic constraints. Suppose that we want to let a
robot push a button to turn a light on. CSpace1 can repre-
sent such constraints. However, the CSpace representation
could be (1) redundant and (2) computationally inefficient
because CSpace is not appropriate for compact representa-
tions. It could be redundant, because it always considers the
configurations of all objects beside our interests (i.e. a but-
ton and a light). Moreover, mapping such constraints into
CSpace would be computationally inefficient, because map-
ping a constraint among n objects could take O(2n) evalu-
ations in worst case. Thus, most of motion planning algo-
rithms assume that such mappings in CSpace are encoded.

AI planning algorithms and description languages (e.g.
PDDL (McDermott 1998)) have difficulty to execute real-
world robots despite of its strength in planing with general-
ized logical constraints. Suppose that we have a PDDL ac-
tion for ‘push the button’ which makes a button pushed and
a light turned on. However, the PDDL description could be
(1) ambiguous and (2) incomplete (require details). Given
a robot with m joints, it is ambiguous how to execute the
robot to push the button, because such execution is not given
in the description. Instead, it assumes that there is a prede-
fined action which makes some conditions (e.g. a button
pushed) satisfied whenever precondition is hold and the ac-
tion is done.

Both methods solve this problem in different ways. Mo-
tion planning algorithms use abstractions to solve this prob-
lem. AI plannings use manual encodings. Although abstrac-
tion provides solutions in a reasonable amount of time in
many applications, abstraction lose completeness. Thus, it
has no computational benefit in worst cases. Although AI
plannings have no need to search the huge CSpace, it re-
quires manual encodings which are not only error-prone but
also computationally inefficient.

We minimize manual encodings using the reachability of
objects (Choi and Amir 2007; 2009b; 2009a). That is, log-
ical actions are extracted from a tree (planned by a motion
planning algorithm), if the actions change the reachability of
objects (i.e. a switch can be reachable by opening a door).

Our algorithm provides a path of a robot given following
inputs: configurations of a robot and objects; constraints be-

1CSpace is the set of all possible configurations



KBMotion

actions:

A

C

B D

act1(A B)

act3(A C)
act2(B A)

act4(C A)

Figure 1: This figure illustrates a process to encode a motion plan
into KBM . The process is follows: (1) a motion plan (a tree) is
built by a motion planning algorithm; (2) actions which changes
the states of objects are found; (3) propositions are generated (and
grouped) based on the found actions; and (4) a KBM is created.
Here, we assume that we have a mapping function which provides
discrete states of objects given the configuration of an object in
finding actions (2).

tween objects; an initial state; and a goal condition.2 We
use logical expressions to represent both spatial constraints
in C-space (e.g. collision) and constraints in state space. We
automatically build a set of actions from a motion planner,
while it was done by hands in previous works.

In detail, our algorithm unifies a general purpose (logical)
planner and a motion planner in one algorithm. It is com-
posed of three subroutines: (1) extracting logical actions
from a motion planner, (2) finding an abstract plan from
the logical domain, and (3) decoding it into C-space. It ex-
tracts PDDL (McDermott 1998) actions KBMotion from a
tree constructed by a motion planner in C-space. ((Choi and
Amir 2009a) provides a formulation for Situation Calculus.)
Then, it combines extracted actions with a given KBObject

(Knowledge Base) that has propositions, axioms (proposi-
tional formulas) and abstract PDDL actions. In the plan-
ning step, an abstract plan is found by a PDDL planner (e.g.
factored planning algorithms (Amir and Engelhardt 2003;
Brafman and Domshlak 2006)). Then, a concrete path is
found from the abstract plan by another motion planner.

The complexity of the planning problem is bounded by
the treewidth of the encoded KB. One may think some anal-
ogy between the treewidth of KB in this paper and the num-
ber of mutually-interfering objects in the motion planning
literature. However, the treewidth is more general expres-
sion because KB has more expressive power than the con-
ventional C-space. In addition, this work proposes two im-
provements in terms of efficiency. One improvement is to
use a factored planning algorithm for the decomposed do-
main. The other is to encode actions on behalf of workspace
which is much smaller than C-space.

2. Related Works
Here, we review the related works in two aspects: (1) using
logical representation in robot planning; and (2) modifying
the motion planning algorithm to achieve complex task (eg.
manipulating objects). One may see the former way as top-
down and the latter way as bottom-up.

(Alami et al. 1998) presents a well-integrated robot archi-
tecture which controls multiple robots. It uses logical rep-
resentations in higher level planners and C-space based mo-

2For each object, we use a function which maps from a con-
figuration to discrete states (labels) of objects, if discrete states are
required for the provided constraints of objects (KBObject).

act1(A B)

act3(A C)
act2(B A)

act4(C A)

KBMotion

actions:

KBobject
conditional actions:
act5(A light C light)
act6(A light C light)

act7(D light C light)
act8(D light C light)

axioms:
light shower

=,

CPMP
actions:

axioms:
light shower

act1(A B)

act3(A C)
act2(B A)

act4(C A)

act5(A light C light)
act6(A light C light)

Figure 2: This figure shows an operation (or algorithm) to com-
bine the extracted KBM (KBMotion) with pre-existing KBO

(KBObject). KBO is independently given in a general form to
a robot. Thus, KBO can be reusable for robots with different con-
figurations space. Meanwhile, KBM is specific to a robot. Thus,
some actions (e.g. act7 and act8) in KBO are invalidated by the
KBM .

tion planners in lower-level planning. (Conner et al. 2007)
provides an improved way to combine the Linear Tempo-
ral Logic (LTL) to control continuously moving cars in the
simulated environment. Its model is a nondeterministic au-
tomata, while our model is deterministic. Due to the in-
tractability of nondeterministic model, the representation is
restricted to a subset of LTL to achieve a tractable (polyno-
mial time) algorithm. These AI planners still requires man-
ual encodings between two layers.

Motion planning research has the long-term goal of build-
ing a motion planning algorithm that finds plans for com-
plex tasks (eg. manipulating objects). (Stilman and Kuffner
2005) suggests such a planning algorithm based on a effi-
cient heuristic planner (Chen and Hwang 1991) which re-
locates obstacles to reach a goal location. Recently, it was
extended to include constraints over object into the C-space
(Stilman 2007). In fact, the algorithms conjunction with
probabilistic roadmap method (Kuffner and LaValle 2000)
are highly effective in manipulating objects.

Other works also present efforts in this direction to build
a motion planning algorithm for complex tasks. (Plaku,
Kavraki, and Vardi 2008) solves a motion planning problem
focused on safety with logical constraints represented with
LTL . (M. Pardowitz 2007) focuses on learning actions for
manipulating objects based on the explanation based learn-
ing (Dejong and Mooney 1986). They use a classical hierar-
chical planner in planning.

3. An Experiment in Simulation
In the simulation, we build our algorithm for a task that
pushes buttons to call numbers. There are 8 buttons in
total. 4 buttons (key1(P1), key2(P2), unlock(P3), and
lock(P4)) are used to lock (and unlock) the buttons. Other
4 buttons (#A(P5), #B(P6), #C(P7) and Call(P8)) are
used to make phone calls. Initially, the button is locked, the
robot needs to push unlock buttons after pushing both key
buttons (P1 and P2). Then, the robot can make a phone
call with pushing the Call button (P8) after selecting an ap-
propriate number among #A(P5), #B(P6), and #C(P7).
After a call, the buttons are automatically unlocked. We en-
code such constraints and action in KBObject.

To build KBMotion, we build a tree from a randomized



Figure 3: This is a capture of the motion of push button in the
wall in experiments. The robot has 5 DOFs (rotational joints on
the base and 4 revolute joints on the arm). We do experiment with
increasing the number of joints from 2 to 9.

algorithm with 80000 points in C-space. With a labeling
function that returned the states of buttons, we found 33
edges in the tree. They are encoded into 8 actions in KBM

for 8 buttons. Then, the combined KB (CPMP ) is used to
find a goal (calling all numbers (#A, #B, and #C). The
returned abstract actions are decoded into a path on the tree
of motion plan. Figure 3 is a snapshot of the simulation.3

4. Conclusion and Future Research
We present an algorithm that combines the general purpose
(logical) planner and a motion planner. Our planner is de-
signed to manipulate objects with robot. To solve the prob-
lem, previous works used a hierarchical planner (high-level)
and a motion planner (low-level). Most of them used man-
ual encodings between two layers. That was one of technical
hardness of this problem.

Theoretically, the combination of such planner is hard
for the following reasons: (1) hierarchical planner is hard
and not feasible sometime; and (2) direct combination of
C-space and state space gives an doubly exponential search
problem. Moreover, we can miss the geometric motion plan-
ning information, if we translate everything to PDDL (Mc-
Dermott 1998) without a motion planner.

Our algorithm combines the C-space and state space in
a KB, CPMP (Combining Planning and Motion Planning).
This is a unique approach in a way that actions of AI plan-
ner are generated by a motion planner. Moreover, we pro-
vide the computational analysis. That is, we prove that the
treewidth of CPMP determines the hardness of a manipula-
tion task.

The combining planning and motion planning is a gener-
alized framwork. However, there are many research prob-
lems to be solved in the future research. First, an al-
gorithm which learns the mapping function between two
spaces would be required. Our algorithm assumes that there
is a mapping function which provides the value of shared
propositions given a configuration of C-Space. Thus, an al-
gorithm which can detect the change of shared propositions

3The details of encoded actions and movies are available at
http://reason.cs.uiuc.edu/jaesik/cpmp/supplementary/.

with sensors would be promissing. Second, the exploration
steps may take long time due to the large cardinality of state
space. Thus, adaptive exploration algorithm which builts a
tree or a graph in CSpace based on the constraints of stats
space would be useful.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An architecture for autonomy. International Journal of
Robotics Research 17(4):315–337.
Amir, E., and Engelhardt, B. 2003. Factored planning. In IJCAI,
929–935.
Brafman, R. I., and Domshlak, C. 2006. Factored planning: How,
when, and when not. In AAAI.
Brock, O., and Khatib, O. 2000. Real-time replanning in high-
dimensional configuration spaces using sets of homotopic paths.
In ICRA’00, 550–555.
Canny, J. 1987. The Complexity of Robot Motion Planning. Cam-
bridge, MA: MIT Press.
Chen, P., and Hwang, Y. 1991. Motion planning for a robot and a
movable object amidst polygonal obstacles. In ICRA’91, 444–449.
Choi, J., and Amir, E. 2007. Factor-guided motion planning for a
robot arm. In IROS’07, 27–32.
Choi, J., and Amir, E. 2009a. Combining motion planning with an
action formalism. In Commonsense, 19–26.
Choi, J., and Amir, E. 2009b. Combining planning and motion
planning. In ICRA’09, 238–244.
Conner, D. C.; Kress-Gazit, H.; Choset, H.; Rizzi, A.; and Pappas,
G. J. 2007. Valet parking without a valet. In IROS’07.
Cortés, J. 2003. Motion Planning Algorithms for General Closed-
Chain Mechanisms. Ph.D. Dissertation, Institut National Polytech-
nique de Toulouse, Toulouse, France.
Dacre-Wright, B.; Laumond, J.-P.; and Alami, R. 1992. Motion
planning for a robot and a movable object amidst polygonal obsta-
cles. In ICRA’92, volume 3, 2474–2480.
Dejong, G., and Mooney, R. 1986. Explanation-based learning:
An alternative view. Mach. Learn. 1(2):145–176.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high dimensional
configuration spaces. IEEE Trans. on Rob. and Auto. 12(4):566–
580.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An efficient
approach to single-query path planning. In ICRA’00.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: Anytime
A* search with provable bounds on sub-optimality. In NIPS’03.
M. Pardowitz, R. Zollner, R. D. 2007. Incremental acquisition
of task knowledge applying heuristic relevance estimation. In
IROS’07.
McDermott, D. 1998. The planning domain definition language
manual.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2008. Hybrid systems:
From verification to falsification by combining motion planning
and discrete search. Formal Methods in System Design.
Stilman, M., and Kuffner, J. 2005. Navigation among movable
obstacles: Real-time reasoning in complex environments. Interna-
tional Journal of Humanoid Robotics 2(4):479–504.
Stilman, M. 2007. Task constrained motion planning in robot joint
space. In IROS’07.


